BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 36265627)

  • 21. Paper-Based Microfluidic Sensors for Onsite Environmental Detection: A Critical Review.
    Zhang D; Li C; Ji D; Wang Y
    Crit Rev Anal Chem; 2022; 52(6):1432-1449. PubMed ID: 33660571
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comprehensive review of emerging contaminants: Detection technologies, environmental impact, and management strategies.
    Li X; Shen X; Jiang W; Xi Y; Li S
    Ecotoxicol Environ Saf; 2024 Jun; 278():116420. PubMed ID: 38701654
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chemicals of emerging concern in the Great Lakes Basin: an analysis of environmental exposures.
    Klecka G; Persoon C; Currie R
    Rev Environ Contam Toxicol; 2010; 207():1-93. PubMed ID: 20652664
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computer simulation of submicron fluid flows in microfluidic chips and their applications in food analysis.
    Xie Z; Pu H; Sun DW
    Compr Rev Food Sci Food Saf; 2021 Jul; 20(4):3818-3837. PubMed ID: 34056852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry.
    Ritter L; Solomon K; Sibley P; Hall K; Keen P; Mattu G; Linton B
    J Toxicol Environ Health A; 2002 Jan; 65(1):1-142. PubMed ID: 11809004
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microfluidics for Environmental Applications.
    Wang T; Yu C; Xie X
    Adv Biochem Eng Biotechnol; 2022; 179():267-290. PubMed ID: 32440697
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recent Advances in the Fabrication and Application of Graphene Microfluidic Sensors.
    Wu S; Wang X; Li Z; Zhang S; Xing F
    Micromachines (Basel); 2020 Nov; 11(12):. PubMed ID: 33265955
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Risk estimation and annual fluxes of emerging contaminants from a Scottish priority catchment to the estuary and North Sea.
    Zhang Z; Lebleu M; Osprey M; Kerr C; Courtot E
    Environ Geochem Health; 2018 Oct; 40(5):1987-2005. PubMed ID: 28660383
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multiplex Detection of Infectious Diseases on Microfluidic Platforms.
    Chen F; Hu Q; Li H; Xie Y; Xiu L; Zhang Y; Guo X; Yin K
    Biosensors (Basel); 2023 Mar; 13(3):. PubMed ID: 36979622
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanomaterial-Supported Enzymes for Water Purification and Monitoring in Point-of-Use Water Supply Systems.
    Wang M; Mohanty SK; Mahendra S
    Acc Chem Res; 2019 Apr; 52(4):876-885. PubMed ID: 30901193
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic Chip with Fiber-Tip Sensors for Synchronously Monitoring Concentration and Temperature of Glucose Solutions.
    Qu J; Liu Y; Li Y; Li J; Meng S
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904681
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Recent advances in isolation and detection of circulating tumor cells with a microfluidic system].
    Cao R; Zhang M; Yu H; Qin J
    Se Pu; 2022 Mar; 40(3):213-223. PubMed ID: 35243831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis of Metal-Organic Frameworks Quantum Dots Composites as Sensors for Endocrine-Disrupting Chemicals.
    Ajibade PA; Oloyede SO
    Int J Mol Sci; 2022 Jul; 23(14):. PubMed ID: 35887328
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic-assisted fiber production: Potentials, limitations, and prospects.
    Abrishamkar A; Nilghaz A; Saadatmand M; Naeimirad M; deMello AJ
    Biomicrofluidics; 2022 Dec; 16(6):061504. PubMed ID: 36406340
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Review of Fiber Optic Sensors for Structural Fire Engineering.
    Bao Y; Huang Y; Hoehler MS; Chen G
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791563
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Environmental Process, Effects and Risks of Emerging Contaminants in the Estuary-Coastal Environment].
    Wang XH; Yu XX; Wang SQ; Yin XH; Qian WX; Lin XP; Wu Y; Liu C
    Huan Jing Ke Xue; 2022 Nov; 43(11):4810-4821. PubMed ID: 36437054
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Advances in Electrochemical Impedance Spectroscopy Detection of Endocrine Disruptors.
    Zamfir LG; Puiu M; Bala C
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33187314
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microfluidic Paper-Based Analytical Devices for the Determination of Food Contaminants: Developments and Applications.
    Wang M; Cui J; Wang Y; Yang L; Jia Z; Gao C; Zhang H
    J Agric Food Chem; 2022 Jul; 70(27):8188-8206. PubMed ID: 35786878
    [TBL] [Abstract][Full Text] [Related]  

  • 39. All-fiber surface-enhanced Raman scattering detection system combining an integrated microfluidic chip and micro-lensed fiber.
    Zheng D; Li W; Zhao B; Yang Z; Xia L
    Appl Opt; 2022 Jun; 61(16):4761-4767. PubMed ID: 36255957
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modular separation-based fiber-optic sensors for remote in situ monitoring.
    Dickens J; Sepaniak M
    J Environ Monit; 2000 Feb; 2(1):11-6. PubMed ID: 11256634
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.