These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 36265627)

  • 41. Ensuring food safety: Microfluidic-based approaches for the detection of food contaminants.
    Kasputis T; Hosmer KE; He Y; Chen J
    Anal Sci Adv; 2024 Jun; 5(5-6):e2400003. PubMed ID: 38948318
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Principles and Applications of Seismic Monitoring Based on Submarine Optical Cable.
    Yu J; Xu P; Yu Z; Wen K; Yang J; Wang Y; Qin Y
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420766
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Review of microfluidic approaches for fabricating intelligent fiber devices: importance of shape characteristics.
    Wu R; Kim T
    Lab Chip; 2021 Apr; 21(7):1217-1240. PubMed ID: 33710187
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Research progress in the application of external field separation technology and microfluidic technology in the separation of micro/nanoscales].
    Cui J; Liu L; Li D; Piao X
    Se Pu; 2021 Nov; 39(11):1157-1170. PubMed ID: 34677011
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Disposable Paper-Based Biosensors for the Point-of-Care Detection of Hazardous Contaminations-A Review.
    Bordbar MM; Sheini A; Hashemi P; Hajian A; Bagheri H
    Biosensors (Basel); 2021 Sep; 11(9):. PubMed ID: 34562906
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microfluidics in environmental analysis: advancements, challenges, and future prospects for rapid and efficient monitoring.
    Aryal P; Hefner C; Martinez B; Henry CS
    Lab Chip; 2024 Feb; 24(5):1175-1206. PubMed ID: 38165815
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Nanozyme-Catalyzed Colorimetric Detection of the Total Antioxidant Capacity in Body Fluids by Paper-Based Microfluidic Chips.
    Wu H; Chen J; Lin P; Su Y; Li H; Xiao W; Peng J
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 39018518
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Application of magnetic immunofluorescence assay based on microfluidic technology to detection of Epstein-Barr virus].
    Li J; Han G; Lin X; Wu L; Qian C; Xu J
    Se Pu; 2022 Apr; 40(4):372-383. PubMed ID: 35362685
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biosensors for rapid detection of bacterial pathogens in water, food and environment.
    Nnachi RC; Sui N; Ke B; Luo Z; Bhalla N; He D; Yang Z
    Environ Int; 2022 Aug; 166():107357. PubMed ID: 35777116
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Emerging pollutants-Part II: Treatment.
    Liu B; Zhang SG; Chang CC
    Water Environ Res; 2020 Oct; 92(10):1603-1617. PubMed ID: 32706436
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Application of Microfluidic Chips in the Detection of Airborne Microorganisms.
    Wang J; Yang L; Wang H; Wang L
    Micromachines (Basel); 2022 Sep; 13(10):. PubMed ID: 36295928
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Application of microfluidic chips in anticancer drug screening.
    Fan XY; Deng ZF; Yan YY; E Orel V; Shypko A; B Orel V; Ivanova D; Pilarsky C; Tang J; Chen ZS; Zhang JY
    Bosn J Basic Med Sci; 2022 Jun; 22(3):302-314. PubMed ID: 34627135
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rotational Paper-Based Microfluidic-Chip Device for Multiplexed and Simultaneous Fluorescence Detection of Phenolic Pollutants Based on a Molecular-Imprinting Technique.
    Qi J; Li B; Wang X; Fu L; Luo L; Chen L
    Anal Chem; 2018 Oct; 90(20):11827-11834. PubMed ID: 30136577
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optical chemical sensors for environmental control and system management.
    Tabacco MB; DiGiuseppe TG
    Adv Space Res; 1996; 18(4-5):125-34. PubMed ID: 11538788
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Gold nanoparticle-based optical microfluidic sensors for analysis of environmental pollutants.
    Lafleur JP; Senkbeil S; Jensen TG; Kutter JP
    Lab Chip; 2012 Nov; 12(22):4651-6. PubMed ID: 22824920
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fast pesticide detection inside microfluidic device with integrated optical pH, oxygen sensors and algal fluorescence.
    Tahirbegi IB; Ehgartner J; Sulzer P; Zieger S; Kasjanow A; Paradiso M; Strobl M; Bouwes D; Mayr T
    Biosens Bioelectron; 2017 Feb; 88():188-195. PubMed ID: 27523821
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Determination of silicone rubber and low-density polyethylene diffusion and polymer/water partition coefficients for emerging contaminants.
    Pintado-Herrera MG; Lara-Martín PA; González-Mazo E; Allan IJ
    Environ Toxicol Chem; 2016 Sep; 35(9):2162-72. PubMed ID: 26833936
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recent advances in paper-based sensors.
    Liana DD; Raguse B; Gooding JJ; Chow E
    Sensors (Basel); 2012; 12(9):11505-26. PubMed ID: 23112667
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Highly sensitive detection of urinary protein variations using tilted fiber grating sensors with plasmonic nanocoatings.
    Guo T; Liu F; Liang X; Qiu X; Huang Y; Xie C; Xu P; Mao W; Guan BO; Albert J
    Biosens Bioelectron; 2016 Apr; 78():221-228. PubMed ID: 26618641
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Research progress on pesticide residue detection based on microfluidic technology.
    Zhu L; Wu M; Li R; Zhao Y; Lu Y; Wang T; Du L; Wan L
    Electrophoresis; 2023 Sep; 44(17-18):1377-1404. PubMed ID: 37496295
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.