These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36265662)

  • 1. Entrapment of air microbubbles by ice crystals during freezing exacerbates freeze-induced denaturation of proteins.
    Dao HM; Sahakijpijarn S; Chrostowski R; Peng HH; Moon C; Xu H; Mangolini F; Do HH; Cui Z; Williams RO
    Int J Pharm; 2022 Nov; 628():122306. PubMed ID: 36265662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aggregation of Lactoferrin Caused by Droplet Atomization Process via a Two-Fluid Nozzle: The Detrimental Effect of Air-Water Interfaces.
    Dao HM; Sahakijpijarn S; Chrostowski RR; Moon C; Mangolini F; Cui Z; Williams RO
    Mol Pharm; 2022 Jul; 19(7):2662-2675. PubMed ID: 35639017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spray freezing into liquid nitrogen for highly stable protein nanostructured microparticles.
    Yu Z; Garcia AS; Johnston KP; Williams RO
    Eur J Pharm Biopharm; 2004 Nov; 58(3):529-37. PubMed ID: 15451527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying.
    Sarciaux JM; Mansour S; Hageman MJ; Nail SL
    J Pharm Sci; 1999 Dec; 88(12):1354-61. PubMed ID: 10585234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Instability of therapeutic proteins - An overview of stresses, stabilization mechanisms and analytical techniques involved in lyophilized proteins.
    Butreddy A; Janga KY; Ajjarapu S; Sarabu S; Dudhipala N
    Int J Biol Macromol; 2021 Jan; 167():309-325. PubMed ID: 33275971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accelerated water removal from frozen thin films containing bacteria.
    Wang JL; Kuang M; Xu H; Williams RO; Cui Z
    Int J Pharm; 2023 Jan; 630():122408. PubMed ID: 36400132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of secondary ice in a frozen NaCl freeze-concentrated solution on the extent of methylene blue aggregation.
    Veselý L; Závacká K; Štůsek R; Olbert M; Neděla V; Shalaev E; Heger D
    Int J Pharm; 2024 Jan; 650():123691. PubMed ID: 38072147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Freeze-drying using vacuum-induced surface freezing.
    Kramer M; Sennhenn B; Lee G
    J Pharm Sci; 2002 Feb; 91(2):433-43. PubMed ID: 11835203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Freezing of tissue-limits for the autoradiographic localization of diffusible substances.
    Frederik PM; Busing WM
    J Histochem Cytochem; 1979 Nov; 27(11):1520-3. PubMed ID: 512336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ice Recrystallization in a Solution of a Cryoprotector and Its Inhibition by a Protein: Synchrotron X-Ray Diffraction Study.
    Zakharov B; Fisyuk A; Fitch A; Watier Y; Kostyuchenko A; Varshney D; Sztucki M; Boldyreva E; Shalaev E
    J Pharm Sci; 2016 Jul; 105(7):2129-38. PubMed ID: 27287516
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of stable submicron protein particles by thin film freezing.
    Engstrom JD; Lai ES; Ludher BS; Chen B; Milner TE; Williams RO; Kitto GB; Johnston KP
    Pharm Res; 2008 Jun; 25(6):1334-46. PubMed ID: 18286357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved freeze drying efficiency by ice nucleation proteins with ice morphology modification.
    Jin J; Yurkow EJ; Adler D; Lee TC
    Food Res Int; 2018 Apr; 106():90-97. PubMed ID: 29580002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Annealing to optimize the primary drying rate, reduce freezing-induced drying rate heterogeneity, and determine T(g)' in pharmaceutical lyophilization.
    Searles JA; Carpenter JF; Randolph TW
    J Pharm Sci; 2001 Jul; 90(7):872-87. PubMed ID: 11458336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protein purification process engineering. Freeze drying: A practical overview.
    Gatlin LA; Nail SL
    Bioprocess Technol; 1994; 18():317-67. PubMed ID: 7764173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spray-freeze-drying for protein powder preparation: particle characterization and a case study with trypsinogen stability.
    Sonner C; Maa YF; Lee G
    J Pharm Sci; 2002 Oct; 91(10):2122-39. PubMed ID: 12226840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Kinetic Model for Spray-Freezing of Pharmaceuticals.
    Borges Sebastião I; Bhatnagar B; Tchessalov S
    J Pharm Sci; 2021 May; 110(5):2047-2062. PubMed ID: 33278411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spray freezing into liquid versus spray-freeze drying: influence of atomization on protein aggregation and biological activity.
    Yu Z; Johnston KP; Williams RO
    Eur J Pharm Sci; 2006 Jan; 27(1):9-18. PubMed ID: 16188431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface-induced denaturation of proteins during freezing and its inhibition by surfactants.
    Chang BS; Kendrick BS; Carpenter JF
    J Pharm Sci; 1996 Dec; 85(12):1325-30. PubMed ID: 8961147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Controlled Ice Nucleation on Stability of Lactate Dehydrogenase During Freeze-Drying.
    Fang R; Tanaka K; Mudhivarthi V; Bogner RH; Pikal MJ
    J Pharm Sci; 2018 Mar; 107(3):824-830. PubMed ID: 29074380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-Scale Freeze-Thaw of Protein Solutions: Study of the Relative Contributions of Freeze-Concentration and Ice Surface Area on Stability of Lactate Dehydrogenase.
    Minatovicz B; Sansare S; Mehta T; Bogner RH; Chaudhuri B
    J Pharm Sci; 2023 Feb; 112(2):482-491. PubMed ID: 36162492
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.