BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36265829)

  • 1. Lipidoid nanoparticles increase ATP uptake into hypoxic brain endothelial cells.
    Khare P; Conway JF; S Manickam D
    Eur J Pharm Biopharm; 2022 Nov; 180():238-250. PubMed ID: 36265829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of Lipidoid Nanoparticles for siRNA Delivery to Neural Cells.
    Khare P; Dave KM; Kamte YS; Manoharan MA; O'Donnell LA; Manickam DS
    AAPS J; 2021 Dec; 24(1):8. PubMed ID: 34873640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of PEG-lipid anchor length on lipid nanoparticle pharmacokinetics and activity in a mouse model of traumatic brain injury.
    Waggoner LE; Miyasaki KF; Kwon EJ
    Biomater Sci; 2023 Jun; 11(12):4238-4253. PubMed ID: 36987922
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipid Nanoparticle Formulations for Enhanced Co-delivery of siRNA and mRNA.
    Ball RL; Hajj KA; Vizelman J; Bajaj P; Whitehead KA
    Nano Lett; 2018 Jun; 18(6):3814-3822. PubMed ID: 29694050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid nanoparticles containing labile PEG-lipids transfect primary human skin cells more efficiently in the presence of apoE.
    Gregersen CH; Mearraoui R; Søgaard PP; Clergeaud G; Petersson K; Urquhart AJ; Simonsen JB
    Eur J Pharm Biopharm; 2024 Apr; 197():114219. PubMed ID: 38368913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substituting racemic ionizable lipids with stereopure ionizable lipids can increase mRNA delivery.
    Da Silva Sanchez AJ; Zhao K; Huayamares SG; Hatit MZC; Lokugamage MP; Loughrey D; Dobrowolski C; Wang S; Kim H; Paunovska K; Kuzminich Y; Dahlman JE
    J Control Release; 2023 Jan; 353():270-277. PubMed ID: 36423872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. pH-labile PEGylation of siRNA-loaded lipid nanoparticle improves active targeting and gene silencing activity in hepatocytes.
    Hashiba K; Sato Y; Harashima H
    J Control Release; 2017 Sep; 262():239-246. PubMed ID: 28774839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ionic liquid-coated lipid nanoparticles increase siRNA uptake into CNS targets.
    Khare P; Edgecomb SX; Hamadani CM; Conway JF; Tanner EEL; S Manickam D
    Nanoscale Adv; 2024 Mar; 6(7):1853-1873. PubMed ID: 38545295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Elucidation of lipid nanoparticle surface structure in mRNA vaccines.
    Wang MM; Wappelhorst CN; Jensen EL; Chi YT; Rouse JC; Zou Q
    Sci Rep; 2023 Oct; 13(1):16744. PubMed ID: 37798336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. siRNA delivery to lymphatic endothelial cells via ApoE-mediated uptake by lipid nanoparticles.
    Sakurai Y; Yoshikawa K; Arai K; Kazaoka A; Aoki S; Ito K; Nakai Y; Tange K; Furihata T; Tanaka H; Akita H
    J Control Release; 2023 Jan; 353():125-133. PubMed ID: 36414194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophobic scaffolds of pH-sensitive cationic lipids contribute to miscibility with phospholipids and improve the efficiency of delivering short interfering RNA by small-sized lipid nanoparticles.
    Sato Y; Okabe N; Note Y; Hashiba K; Maeki M; Tokeshi M; Harashima H
    Acta Biomater; 2020 Jan; 102():341-350. PubMed ID: 31733331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorinated Lipid Nanoparticles for Enhancing mRNA Delivery Efficiency.
    Zhang H; Meng C; Yi X; Han J; Wang J; Liu F; Ling Q; Li H; Gu Z
    ACS Nano; 2024 Mar; 18(11):7825-7836. PubMed ID: 38452271
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-localization of fluorescent labeled lipid nanoparticles with specifically tagged subcellular compartments by single particle tracking at low nanoparticle to cell ratios.
    Tiffany M; Szoka FC
    J Drug Target; 2016 Nov; 24(9):857-864. PubMed ID: 27600702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitation of physiological and biochemical barriers to siRNA liver delivery via lipid nanoparticle platform.
    Xu Y; Ou M; Keough E; Roberts J; Koeplinger K; Lyman M; Fauty S; Carlini E; Stern M; Zhang R; Yeh S; Mahan E; Wang Y; Slaughter D; Gindy M; Raab C; Thompson C; Hochman J
    Mol Pharm; 2014 May; 11(5):1424-34. PubMed ID: 24588618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A tale of nucleic acid-ionizable lipid nanoparticles: Design and manufacturing technology and advancement.
    De A; Ko YT
    Expert Opin Drug Deliv; 2023 Jan; 20(1):75-91. PubMed ID: 36445261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating the mechanism of action of DNA-loaded PEGylated lipid nanoparticles.
    Digiacomo L; Renzi S; Quagliarini E; Pozzi D; Amenitsch H; Ferri G; Pesce L; De Lorenzi V; Matteoli G; Cardarelli F; Caracciolo G
    Nanomedicine; 2023 Sep; 53():102697. PubMed ID: 37507061
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrophobic Domain Structure of Linear-Dendritic Poly(ethylene glycol) Lipids Affects RNA Delivery of Lipid Nanoparticles.
    Zhou K; Johnson LT; Xiong H; Barrios S; Minnig JT; Yan Y; Abram B; Yu X; Siegwart DJ
    Mol Pharm; 2020 May; 17(5):1575-1585. PubMed ID: 32267707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PEG-OligoRNA Hybridization of mRNA for Developing Sterically Stable Lipid Nanoparticles toward In Vivo Administration.
    Kurimoto S; Yoshinaga N; Igarashi K; Matsumoto Y; Cabral H; Uchida S
    Molecules; 2019 Apr; 24(7):. PubMed ID: 30987102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of helper lipids in lipid nanoparticles (LNPs) designed for oligonucleotide delivery.
    Cheng X; Lee RJ
    Adv Drug Deliv Rev; 2016 Apr; 99(Pt A):129-137. PubMed ID: 26900977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formulating and Characterizing Lipid Nanoparticles for Gene Delivery using a Microfluidic Mixing Platform.
    Bailey-Hytholt CM; Ghosh P; Dugas J; Zarraga IE; Bandekar A
    J Vis Exp; 2021 Feb; (168):. PubMed ID: 33720139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.