BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36266295)

  • 1. An automatic hypothesis generation for plausible linkage between xanthium and diabetes.
    Syafiandini AF; Song G; Ahn Y; Kim H; Song M
    Sci Rep; 2022 Oct; 12(1):17547. PubMed ID: 36266295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A graph-based recovery and decomposition of Swanson's hypothesis using semantic predications.
    Cameron D; Bodenreider O; Yalamanchili H; Danh T; Vallabhaneni S; Thirunarayan K; Sheth AP; Rindflesch TC
    J Biomed Inform; 2013 Apr; 46(2):238-51. PubMed ID: 23026233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discovering causal paths to diabetic nephropathy by combining computable biomedical knowledge with graph mining algorithms.
    Wang S; Wang HY; Du J
    AMIA Annu Symp Proc; 2022; 2022():1118-1124. PubMed ID: 37128414
    [No Abstract]   [Full Text] [Related]  

  • 4. Path-based knowledge reasoning with textual semantic information for medical knowledge graph completion.
    Lan Y; He S; Liu K; Zeng X; Liu S; Zhao J
    BMC Med Inform Decis Mak; 2021 Nov; 21(Suppl 9):335. PubMed ID: 34844576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global Graph Attention Embedding Network for Relation Prediction in Knowledge Graphs.
    Li Q; Wang D; Feng S; Niu C; Zhang Y
    IEEE Trans Neural Netw Learn Syst; 2022 Nov; 33(11):6712-6725. PubMed ID: 34115594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enriching plausible new hypothesis generation in PubMed.
    Baek SH; Lee D; Kim M; Lee JH; Song M
    PLoS One; 2017; 12(7):e0180539. PubMed ID: 28678852
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Scalable Embedding Based Neural Network Method for Discovering Knowledge From Biomedical Literature.
    Sang S; Liu X; Chen X; Zhao D
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(3):1294-1301. PubMed ID: 32750871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Context-driven automatic subgraph creation for literature-based discovery.
    Cameron D; Kavuluru R; Rindflesch TC; Sheth AP; Thirunarayan K; Bodenreider O
    J Biomed Inform; 2015 Apr; 54():141-57. PubMed ID: 25661592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A context-based ABC model for literature-based discovery.
    Kim YH; Song M
    PLoS One; 2019; 14(4):e0215313. PubMed ID: 31017923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inferring Drug-Protein⁻Side Effect Relationships from Biomedical Text.
    Song M; Baek SH; Heo GE; Lee JH
    Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30791472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From centralized to ad-hoc knowledge base construction for hypotheses generation.
    Launer-Wachs S; Taub-Tabib H; Madem JT; Bar-Natan O; Goldberg Y; Shamay Y
    J Biomed Inform; 2023 Jun; 142():104383. PubMed ID: 37196989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of word and graph embedding to measure semantic relatedness between Unified Medical Language System concepts.
    Mao Y; Fung KW
    J Am Med Inform Assoc; 2020 Oct; 27(10):1538-1546. PubMed ID: 33029614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PKDE4J: Entity and relation extraction for public knowledge discovery.
    Song M; Kim WC; Lee D; Heo GE; Kang KY
    J Biomed Inform; 2015 Oct; 57():320-32. PubMed ID: 26277115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks.
    Alachram H; Chereda H; Beißbarth T; Wingender E; Stegmaier P
    PLoS One; 2021; 16(10):e0258623. PubMed ID: 34653224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SemaTyP: a knowledge graph based literature mining method for drug discovery.
    Sang S; Yang Z; Wang L; Liu X; Lin H; Wang J
    BMC Bioinformatics; 2018 May; 19(1):193. PubMed ID: 29843590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BIOMedical Search Engine Framework: Lightweight and customized implementation of domain-specific biomedical search engines.
    Jácome AG; Fdez-Riverola F; Lourenço A
    Comput Methods Programs Biomed; 2016 Jul; 131():63-77. PubMed ID: 27265049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A heterogeneous network-based method with attentive meta-path extraction for predicting drug-target interactions.
    Wang H; Huang F; Xiong Z; Zhang W
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35641162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Building a Knowledge Graph Representing Causal Associations Between Risk Factors and Incidence of Breast Cancer.
    Daowd A; Barrett M; Abidi S; Abidi SSR
    Stud Health Technol Inform; 2021 May; 281():724-728. PubMed ID: 34042671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PREDOSE: a semantic web platform for drug abuse epidemiology using social media.
    Cameron D; Smith GA; Daniulaityte R; Sheth AP; Dave D; Chen L; Anand G; Carlson R; Watkins KZ; Falck R
    J Biomed Inform; 2013 Dec; 46(6):985-97. PubMed ID: 23892295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conceptual biology, hypothesis discovery, and text mining: Swanson's legacy.
    Bekhuis T
    Biomed Digit Libr; 2006 Apr; 3():2. PubMed ID: 16584552
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.