BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 36266680)

  • 1. orsai, the Drosophila homolog of human ETFRF1, links lipid catabolism to growth control.
    Fernandez-Acosta M; Romero JI; Bernabó G; Velázquez-Campos GM; Gonzalez N; Mares ML; Werbajh S; Avendaño-Vázquez LA; Rechberger GN; Kühnlein RP; Marino-Buslje C; Cantera R; Rezaval C; Ceriani MF
    BMC Biol; 2022 Oct; 20(1):233. PubMed ID: 36266680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Larval nutrition influences adult fat stores and starvation resistance in Drosophila.
    Rehman N; Varghese J
    PLoS One; 2021; 16(2):e0247175. PubMed ID: 33606785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic studies of spectrin in the larval fat body of Drosophila melanogaster: evidence for a novel lipid uptake apparatus.
    Diaconeasa B; Mazock GH; Mahowald AP; Dubreuil RR
    Genetics; 2013 Nov; 195(3):871-81. PubMed ID: 24037266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A buoyancy-based screen of Drosophila larvae for fat-storage mutants reveals a role for Sir2 in coupling fat storage to nutrient availability.
    Reis T; Van Gilst MR; Hariharan IK
    PLoS Genet; 2010 Nov; 6(11):e1001206. PubMed ID: 21085633
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transportin-serine/arginine-rich (Tnpo-SR) proteins are necessary for proper lipid storage in the Drosophila fat body.
    Nagle C; Bhogal JK; Nagengast AA; DiAngelo JR
    Biochem Biophys Res Commun; 2022 Mar; 596():1-5. PubMed ID: 35104661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the heterogeneous nuclear ribonucleoprotein (hnRNP) Hrb27C in regulating lipid storage in the Drosophila fat body.
    Bhogal JK; Kanaskie JM; DiAngelo JR
    Biochem Biophys Res Commun; 2020 Mar; 524(1):178-183. PubMed ID: 31982137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drosophila larvae lacking the bcl-2 gene, buffy, are sensitive to nutrient stress, maintain increased basal target of rapamycin (Tor) signaling and exhibit characteristics of altered basal energy metabolism.
    Monserrate JP; Chen MY; Brachmann CB
    BMC Biol; 2012 Jul; 10():63. PubMed ID: 22824239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The contribution of the Drosophila model to lipid droplet research.
    Kühnlein RP
    Prog Lipid Res; 2011 Oct; 50(4):348-56. PubMed ID: 21620889
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specialized hepatocyte-like cells regulate Drosophila lipid metabolism.
    Gutierrez E; Wiggins D; Fielding B; Gould AP
    Nature; 2007 Jan; 445(7125):275-80. PubMed ID: 17136098
    [TBL] [Abstract][Full Text] [Related]  

  • 10. dHNF4 regulates lipid homeostasis and oogenesis in Drosophila melanogaster.
    Almeida-Oliveira F; Tuthill BF; Gondim KC; Majerowicz D; Musselman LP
    Insect Biochem Mol Biol; 2021 Jun; 133():103569. PubMed ID: 33753225
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The α/β-hydrolase domain-containing 4- and 5-related phospholipase Pummelig controls energy storage in
    Hehlert P; Hofferek V; Heier C; Eichmann TO; Riedel D; Rosenberg J; Takaćs A; Nagy HM; Oberer M; Zimmermann R; Kühnlein RP
    J Lipid Res; 2019 Aug; 60(8):1365-1378. PubMed ID: 31164391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The SR proteins SF2 and RBP1 regulate triglyceride storage in the fat body of Drosophila.
    Bennick RA; Nagengast AA; DiAngelo JR
    Biochem Biophys Res Commun; 2019 Aug; 516(3):928-933. PubMed ID: 31277943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of energy stores and feeding by neuronal and peripheral CREB activity in Drosophila.
    Iijima K; Zhao L; Shenton C; Iijima-Ando K
    PLoS One; 2009 Dec; 4(12):e8498. PubMed ID: 20041126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The evolutionarily conserved protein CG9186 is associated with lipid droplets, required for their positioning and for fat storage.
    Thiel K; Heier C; Haberl V; Thul PJ; Oberer M; Lass A; Jäckle H; Beller M
    J Cell Sci; 2013 May; 126(Pt 10):2198-212. PubMed ID: 23525007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of a novel role for Drosophila MESR4 in lipid metabolism.
    Tsuda-Sakurai K; Seong KH; Horiuchi J; Aigaki T; Tsuda M
    Genes Cells; 2015 Apr; 20(4):358-65. PubMed ID: 25639854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Function of Lipid Storage Droplet 1 (Lsd1) in Wing Development of Drosophila melanogaster.
    Men TT; Binh TD; Yamaguchi M; Huy NT; Kamei K
    Int J Mol Sci; 2016 Apr; 17(5):. PubMed ID: 27136547
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac Snail family of transcription factors directs systemic lipid metabolism in Drosophila.
    Liu Y; Bao H; Wang W; Lim HY
    PLoS Genet; 2019 Nov; 15(11):e1008487. PubMed ID: 31725726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of fat body lipogenesis in protection against the effects of caloric overload in Drosophila.
    Musselman LP; Fink JL; Ramachandran PV; Patterson BW; Okunade AL; Maier E; Brent MR; Turk J; Baranski TJ
    J Biol Chem; 2013 Mar; 288(12):8028-8042. PubMed ID: 23355467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gbb/BMP signaling is required to maintain energy homeostasis in Drosophila.
    Ballard SL; Jarolimova J; Wharton KA
    Dev Biol; 2010 Jan; 337(2):375-85. PubMed ID: 19914231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor induction in Drosophila imaginal epithelia triggers modulation of fat body lipid droplets.
    Harsh S; Eleftherianos I
    Biochimie; 2020 Dec; 179():65-68. PubMed ID: 32946989
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.