These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 36266734)
1. A cold-active esterase enhances mesophilic properties through Mn Marchetti A; Orlando M; Mangiagalli M; Lotti M FEBS J; 2023 May; 290(9):2394-2411. PubMed ID: 36266734 [TBL] [Abstract][Full Text] [Related]
2. The co-existence of cold activity and thermal stability in an Antarctic GH42 β-galactosidase relies on its hexameric quaternary arrangement. Mangiagalli M; Lapi M; Maione S; Orlando M; Brocca S; Pesce A; Barbiroli A; Camilloni C; Pucciarelli S; Lotti M; Nardini M FEBS J; 2021 Jan; 288(2):546-565. PubMed ID: 32363751 [TBL] [Abstract][Full Text] [Related]
3. Structural determinants of cold activity and glucose tolerance of a family 1 glycoside hydrolase (GH1) from Antarctic Marinomonas sp. ef1. Gourlay LJ; Mangiagalli M; Moroni E; Lotti M; Nardini M FEBS J; 2024 Jul; 291(13):2897-2917. PubMed ID: 38400529 [TBL] [Abstract][Full Text] [Related]
4. Cold-active esterase from Psychrobacter sp. Ant300: gene cloning, characterization, and the effects of Gly-->Pro substitution near the active site on its catalytic activity and stability. Kulakova L; Galkin A; Nakayama T; Nishino T; Esaki N Biochim Biophys Acta; 2004 Jan; 1696(1):59-65. PubMed ID: 14726205 [TBL] [Abstract][Full Text] [Related]
5. Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium Desulfotalea psychrophila reveal a cold-active enzyme with an unusual high thermal stability. Fedøy AE; Yang N; Martinez A; Leiros HK; Steen IH J Mol Biol; 2007 Sep; 372(1):130-49. PubMed ID: 17632124 [TBL] [Abstract][Full Text] [Related]
6. Structural features determining thermal adaptation of esterases. Kovacic F; Mandrysch A; Poojari C; Strodel B; Jaeger KE Protein Eng Des Sel; 2016 Feb; 29(2):65-76. PubMed ID: 26647400 [TBL] [Abstract][Full Text] [Related]
7. Active site architecture of an acetyl xylan esterase indicates a novel cold adaptation strategy. Zhang Y; Ding HT; Jiang WX; Zhang X; Cao HY; Wang JP; Li CY; Huang F; Zhang XY; Chen XL; Zhang YZ; Li PY J Biol Chem; 2021 Jul; 297(1):100841. PubMed ID: 34058201 [TBL] [Abstract][Full Text] [Related]
8. Flexibility and Stability Trade-Off in Active Site of Cold-Adapted Pseudomonas mandelii Esterase EstK. Truongvan N; Jang SH; Lee C Biochemistry; 2016 Jun; 55(25):3542-9. PubMed ID: 27259687 [TBL] [Abstract][Full Text] [Related]
9. Principles of Cold Adaptation of Fish Lactate Dehydrogenases Revealed by Computer Simulations of the Catalytic Reaction. Koenekoop L; Åqvist J Mol Biol Evol; 2023 May; 40(5):. PubMed ID: 37116207 [TBL] [Abstract][Full Text] [Related]
10. Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Russell RJ; Gerike U; Danson MJ; Hough DW; Taylor GL Structure; 1998 Mar; 6(3):351-61. PubMed ID: 9551556 [TBL] [Abstract][Full Text] [Related]
11. Psychrophilic enzymes: molecular basis of cold adaptation. Feller G; Gerday C Cell Mol Life Sci; 1997 Oct; 53(10):830-41. PubMed ID: 9413552 [TBL] [Abstract][Full Text] [Related]
12. Rational Engineering of a Cold-Adapted α-Amylase from the Antarctic Ciliate Euplotes focardii for Simultaneous Improvement of Thermostability and Catalytic Activity. Yang G; Yao H; Mozzicafreddo M; Ballarini P; Pucciarelli S; Miceli C Appl Environ Microbiol; 2017 Jul; 83(13):. PubMed ID: 28455329 [TBL] [Abstract][Full Text] [Related]
13. Cold adaptation of zinc metalloproteases in the thermolysin family from deep sea and arctic sea ice bacteria revealed by catalytic and structural properties and molecular dynamics: new insights into relationship between conformational flexibility and hydrogen bonding. Xie BB; Bian F; Chen XL; He HL; Guo J; Gao X; Zeng YX; Chen B; Zhou BC; Zhang YZ J Biol Chem; 2009 Apr; 284(14):9257-69. PubMed ID: 19181663 [TBL] [Abstract][Full Text] [Related]
14. Characterization of the first eukaryotic cold-adapted patatin-like phospholipase from the psychrophilic Euplotes focardii: Identification of putative determinants of thermal-adaptation by comparison with the homologous protein from the mesophilic Euplotes crassus. Yang G; De Santi C; de Pascale D; Pucciarelli S; Pucciarelli S; Miceli C Biochimie; 2013 Sep; 95(9):1795-806. PubMed ID: 23796575 [TBL] [Abstract][Full Text] [Related]
15. Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases. Georlette D; Damien B; Blaise V; Depiereux E; Uversky VN; Gerday C; Feller G J Biol Chem; 2003 Sep; 278(39):37015-23. PubMed ID: 12857762 [TBL] [Abstract][Full Text] [Related]
16. Enhanced catalytic site thermal stability of cold-adapted esterase EstK by a W208Y mutation. Boyineni J; Kim J; Kang BS; Lee C; Jang SH Biochim Biophys Acta; 2014 Jun; 1844(6):1076-82. PubMed ID: 24667115 [TBL] [Abstract][Full Text] [Related]
17. Molecular Structural Basis for the Cold Adaptedness of the Psychrophilic β-Glucosidase BglU in Micrococcus antarcticus. Miao LL; Hou YJ; Fan HX; Qu J; Qi C; Liu Y; Li DF; Liu ZP Appl Environ Microbiol; 2016 Jan; 82(7):2021-2030. PubMed ID: 26801571 [TBL] [Abstract][Full Text] [Related]
18. Structure of phenylalanine hydroxylase from Colwellia psychrerythraea 34H, a monomeric cold active enzyme with local flexibility around the active site and high overall stability. Leiros HK; Pey AL; Innselset M; Moe E; Leiros I; Steen IH; Martinez A J Biol Chem; 2007 Jul; 282(30):21973-86. PubMed ID: 17537732 [TBL] [Abstract][Full Text] [Related]
19. Distinct roles of an ionic interaction holding an alpha-helix with catalytic Asp and a beta-strand with catalytic His in a hyperthermophilic esterase EstE1 and a mesophilic esterase rPPE. Dachuri V; Truongvan N; DangThu Q; Jang SH; Lee C Extremophiles; 2019 Nov; 23(6):649-657. PubMed ID: 31332517 [TBL] [Abstract][Full Text] [Related]
20. Distinct metal dependence for catalytic and structural functions in the L-arabinose isomerases from the mesophilic Bacillus halodurans and the thermophilic Geobacillus stearothermophilus. Lee DW; Choe EA; Kim SB; Eom SH; Hong YH; Lee SJ; Lee HS; Lee DY; Pyun YR Arch Biochem Biophys; 2005 Feb; 434(2):333-43. PubMed ID: 15639234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]