BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 36266785)

  • 1. Microscopic kinetic theory of the mean collision force of a particle moving in rarefied gases.
    Wei T; Cao X; Ma D; Li Y; Jia C
    Phys Rev E; 2022 Sep; 106(3-1):034101. PubMed ID: 36266785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on "Microscopic kinetic theory of the mean collision force of a particle moving in rarefied gases".
    Khrapak S
    Phys Rev E; 2023 Sep; 108(3-2):036101. PubMed ID: 37849161
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reply to "Comment on 'Microscopic kinetic theory of the mean collision force of a particle moving in rarefied gases' ".
    Wei T; Cao X; Li Y; Ma D; Jia C
    Phys Rev E; 2023 Sep; 108(3-2):036102. PubMed ID: 37849162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding collective dynamics of soft active colloids by binary scattering.
    Hanke T; Weber CA; Frey E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052309. PubMed ID: 24329266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the Rarefied Gas Experiments.
    Kovács R
    Entropy (Basel); 2019 Jul; 21(7):. PubMed ID: 33267432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unifying kinetic approach to phoretic forces and torques onto moving and rotating convex particles.
    Kröger M; Hütter M
    J Chem Phys; 2006 Jul; 125(4):44105. PubMed ID: 16942132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Collision group and renormalization of the Boltzmann collision integral.
    Saveliev VL; Nanbu K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051205. PubMed ID: 12059543
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical modeling of submicron particles for acoustic concentration in gaseous flow.
    Liu J; Li X; Hu FQ
    J Acoust Soc Am; 2020 Jan; 147(1):152. PubMed ID: 32007011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computer simulation of diffusion-limited cluster-cluster aggregation with an Epstein drag force.
    Pierce F; Sorensen CM; Chakrabarti A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021411. PubMed ID: 17025429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of surface friction on a two-dimensional granular system: cooling bound system.
    Dutt M; Behringer RP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061304. PubMed ID: 15697352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrete unified gas-kinetic wave-particle method for flows in all flow regimes.
    Yang LM; Li ZH; Shu C; Liu YY; Liu W; Wu J
    Phys Rev E; 2023 Jul; 108(1-2):015302. PubMed ID: 37583183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case.
    Guo Z; Wang R; Xu K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033313. PubMed ID: 25871252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaporation Boundary Conditions for the Linear R13 Equations Based on the Onsager Theory.
    Beckmann AF; Rana AS; Torrilhon M; Struchtrup H
    Entropy (Basel); 2018 Sep; 20(9):. PubMed ID: 33265769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time asymmetry of the Kramers equation with nonlinear friction: fluctuation-dissipation relation and ratchet effect.
    Sarracino A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052124. PubMed ID: 24329231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cherenkov friction on a neutral particle moving parallel to a dielectric.
    Pieplow G; Henkel C
    J Phys Condens Matter; 2015 Jun; 27(21):214001. PubMed ID: 25965087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Force calculation on walls and embedded particles in multiparticle-collision-dynamics simulations.
    Imperio A; Padding JT; Briels W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046704. PubMed ID: 21599331
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collision rate coefficient for charged dust grains in the presence of linear shear.
    Yang H; Hogan CJ
    Phys Rev E; 2017 Sep; 96(3-1):032911. PubMed ID: 29347041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the drag force on single-walled carbon nanotubes in rarefied gases.
    Wong RY; Liu C; Wang J; Chao CY; Li Z
    J Nanosci Nanotechnol; 2012 Mar; 12(3):2311-9. PubMed ID: 22755052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophoresis in strong electric fields.
    Barany S
    Adv Colloid Interface Sci; 2009; 147-148():36-43. PubMed ID: 19041962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermophoretic force and velocity of nanoparticles in the free molecule regime.
    Li Z; Wang H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 1):021205. PubMed ID: 15447483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.