These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36266879)

  • 1. Effect of combined roundness and polydispersity on the phase behavior of hard-rectangle fluids.
    Martínez-Ratón Y; Velasco E
    Phys Rev E; 2022 Sep; 106(3-1):034602. PubMed ID: 36266879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of length polydispersity in the phase behavior of freely rotating hard-rectangle fluids.
    Díaz-De Armas A; Martínez-Ratón Y
    Phys Rev E; 2017 May; 95(5-1):052702. PubMed ID: 28618522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demixing and tetratic ordering in some binary mixtures of hard superellipses.
    Mizani S; Gurin P; Aliabadi R; Salehi H; Varga S
    J Chem Phys; 2020 Jul; 153(3):034501. PubMed ID: 32716200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demixing and orientational ordering in mixtures of rectangular particles.
    de las Heras D; Martínez-Ratón Y; Velasco E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031704. PubMed ID: 17930260
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Orientational ordering in hard rectangles: The role of three-body correlations.
    Martínez-Ratón Y; Velasco E; Mederos L
    J Chem Phys; 2006 Jul; 125(1):014501. PubMed ID: 16863310
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isotropic-nematic phase transition of nonaqueous suspensions of natural clay rods.
    Zhang ZX; van Duijneveldt JS
    J Chem Phys; 2006 Apr; 124(15):154910. PubMed ID: 16674268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced stability of the tetratic phase due to clustering.
    Martínez-Ratón Y; Velasco E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011711. PubMed ID: 19257056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Uniform phases in fluids of hard isosceles triangles: One-component fluid and binary mixtures.
    Martínez-Ratón Y; Díaz-De Armas A; Velasco E
    Phys Rev E; 2018 May; 97(5-1):052703. PubMed ID: 29906820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase equilibria in systems of hard disks with thickness polydispersity.
    Wensink HH; Vroege GJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 1):031716. PubMed ID: 11909090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized van der Waals theory for phase behavior of two-dimensional nematic liquid crystals: Phase ordering and the equation of state.
    Zonta MV; Soulé ER
    Phys Rev E; 2019 Dec; 100(6-1):062703. PubMed ID: 31962528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Liquid crystal phase transitions in systems of colloidal platelets with bimodal shape distribution.
    Verhoeff AA; Wensink HH; Vis M; Jackson G; Lekkerkerker HN
    J Phys Chem B; 2009 Oct; 113(41):13476-84. PubMed ID: 19761225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of polydispersity, bimodality, and aspect ratio on the phase behavior of colloidal platelet suspensions.
    Martínez-Ratón Y; Velasco E
    J Chem Phys; 2012 Oct; 137(13):134906. PubMed ID: 23039612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Liquid-crystal patterns of rectangular particles in a square nanocavity.
    González-Pinto M; Martínez-Ratón Y; Velasco E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032506. PubMed ID: 24125284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment by Monte Carlo computer simulations of the phase behavior of hard spherocylinders confined within cylindrical cavities.
    Viveros-Méndez PX; Gil-Villegas A; Aranda Espinoza S
    J Chem Phys; 2017 Dec; 147(23):234902. PubMed ID: 29272952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nematic and almost-tetratic phases of colloidal rectangles.
    Zhao K; Harrison C; Huse D; Russel WB; Chaikin PM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):040401. PubMed ID: 17994923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of polydispersity and soft interactions on the nematic versus smectic phase stability in platelet suspensions.
    Martínez-Ratón Y; Velasco E
    J Chem Phys; 2011 Mar; 134(12):124904. PubMed ID: 21456700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymptotic behavior of the isotropic-nematic and nematic-columnar phase boundaries for the system of hard rectangles on a square lattice.
    Kundu J; Rajesh R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012105. PubMed ID: 25679568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isotropic-nematic phase equilibria in the Onsager theory of hard rods with length polydispersity.
    Speranza A; Sollich P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):061702. PubMed ID: 16241239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polydispersity reduction of colloidal plates via size fractionation of the isotropic-nematic phase transition.
    Chen F; Chen M; Chang YW; Lin P; Chen Y; Cheng Z
    Soft Matter; 2017 May; 13(20):3789-3793. PubMed ID: 28480932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orientational ordering in a fluid of hard kites: A density-functional-theory study.
    Martínez-Ratón Y; Velasco E
    Phys Rev E; 2020 Nov; 102(5-1):052128. PubMed ID: 33327136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.