These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 36266908)
1. Mean-field model for nematic alignment of self-propelled rods. Perepelitsa M; Timofeyev I; Murphy P; Igoshin OA Phys Rev E; 2022 Sep; 106(3-1):034613. PubMed ID: 36266908 [TBL] [Abstract][Full Text] [Related]
2. Breakdown of Boltzmann-type models for the alignment of self-propelled rods. Murphy P; Perepelitsa M; Timofeyev I; Lieber-Kotz M; Islas B; Igoshin OA Math Biosci; 2024 Oct; 376():109266. PubMed ID: 39127094 [TBL] [Abstract][Full Text] [Related]
3. Phase separation of self-propelled disks with ferromagnetic and nematic alignment. Sesé-Sansa E; Levis D; Pagonabarraga I Phys Rev E; 2021 Nov; 104(5-1):054611. PubMed ID: 34942723 [TBL] [Abstract][Full Text] [Related]
4. A particle-field approach bridges phase separation and collective motion in active matter. Großmann R; Aranson IS; Peruani F Nat Commun; 2020 Oct; 11(1):5365. PubMed ID: 33097711 [TBL] [Abstract][Full Text] [Related]
5. Enhanced diffusion and ordering of self-propelled rods. Baskaran A; Marchetti MC Phys Rev Lett; 2008 Dec; 101(26):268101. PubMed ID: 19113789 [TBL] [Abstract][Full Text] [Related]
6. Hysteresis, reentrance, and glassy dynamics in systems of self-propelled rods. Kuan HS; Blackwell R; Hough LE; Glaser MA; Betterton MD Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(6):060501. PubMed ID: 26764616 [TBL] [Abstract][Full Text] [Related]
7. Rods in a lyotropic chromonic liquid crystal: emergence of chirality, symmetry-breaking alignment, and caged angular diffusion. Ettinger S; Dietrich CF; Mishra CK; Miksch C; Beller DA; Collings PJ; Yodh AG Soft Matter; 2022 Jan; 18(3):487-495. PubMed ID: 34851348 [TBL] [Abstract][Full Text] [Related]
8. Mesoscale pattern formation of self-propelled rods with velocity reversal. Großmann R; Peruani F; Bär M Phys Rev E; 2016 Nov; 94(5-1):050602. PubMed ID: 27967147 [TBL] [Abstract][Full Text] [Related]
10. Collective behavior of penetrable self-propelled rods in two dimensions. Abkenar M; Marx K; Auth T; Gompper G Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062314. PubMed ID: 24483451 [TBL] [Abstract][Full Text] [Related]
11. Microscopic dynamics of thin hard rods. Otto M; Aspelmeier T; Zippelius A J Chem Phys; 2006 Apr; 124(15):154907. PubMed ID: 16674265 [TBL] [Abstract][Full Text] [Related]
12. Collective motion of binary self-propelled particle mixtures. Menzel AM Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021912. PubMed ID: 22463249 [TBL] [Abstract][Full Text] [Related]
13. Self-regulation in self-propelled nematic fluids. Baskaran A; Marchetti MC Eur Phys J E Soft Matter; 2012 Sep; 35(9):95. PubMed ID: 23053844 [TBL] [Abstract][Full Text] [Related]
14. Nematic ordering of hard rods under strong confinement in a dense array of nanoposts. Kil KH; Yethiraj A; Kim JS Phys Rev E; 2020 Mar; 101(3-1):032705. PubMed ID: 32289982 [TBL] [Abstract][Full Text] [Related]
15. Large-scale collective properties of self-propelled rods. Ginelli F; Peruani F; Bär M; Chaté H Phys Rev Lett; 2010 May; 104(18):184502. PubMed ID: 20482178 [TBL] [Abstract][Full Text] [Related]
17. Tricritical points in a Vicsek model of self-propelled particles with bounded confidence. Romensky M; Lobaskin V; Ihle T Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Dec; 90(6):063315. PubMed ID: 25615230 [TBL] [Abstract][Full Text] [Related]
18. Comparison between Smoluchowski and Boltzmann approaches for self-propelled rods. Bertin E; Baskaran A; Chaté H; Marchetti MC Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):042141. PubMed ID: 26565202 [TBL] [Abstract][Full Text] [Related]
19. Inherent noise can facilitate coherence in collective swarm motion. Yates CA; Erban R; Escudero C; Couzin ID; Buhl C; Kevrekidis IG; Maini PK; Sumpter DJ Proc Natl Acad Sci U S A; 2009 Apr; 106(14):5464-9. PubMed ID: 19336580 [TBL] [Abstract][Full Text] [Related]
20. Active matter in infinite dimensions: Fokker-Planck equation and dynamical mean-field theory at low density. Arnoulx de Pirey T; Manacorda A; van Wijland F; Zamponi F J Chem Phys; 2021 Nov; 155(17):174106. PubMed ID: 34742220 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]