These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 36266913)
1. Inertial dynamics of an active Brownian particle. Mayer Martins J; Wittkowski R Phys Rev E; 2022 Sep; 106(3-1):034616. PubMed ID: 36266913 [TBL] [Abstract][Full Text] [Related]
2. Inertial effects of self-propelled particles: From active Brownian to active Langevin motion. Löwen H J Chem Phys; 2020 Jan; 152(4):040901. PubMed ID: 32007042 [TBL] [Abstract][Full Text] [Related]
3. Active Brownian particle in homogeneous media of different viscosities: numerical simulations. Lisin EA; Vaulina OS; Lisina II; Petrov OF Phys Chem Chem Phys; 2021 Aug; 23(30):16248-16257. PubMed ID: 34308937 [TBL] [Abstract][Full Text] [Related]
4. Active Ornstein-Uhlenbeck model for self-propelled particles with inertia. Nguyen GHP; Wittmann R; Löwen H J Phys Condens Matter; 2021 Nov; 34(3):. PubMed ID: 34598179 [TBL] [Abstract][Full Text] [Related]
5. Self-propelled Brownian spinning top: dynamics of a biaxial swimmer at low Reynolds numbers. Wittkowski R; Löwen H Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021406. PubMed ID: 22463211 [TBL] [Abstract][Full Text] [Related]
6. Motion of a self-propelled particle with rotational inertia. Lisin EA; Vaulina OS; Lisina II; Petrov OF Phys Chem Chem Phys; 2022 Jun; 24(23):14150-14158. PubMed ID: 35648110 [TBL] [Abstract][Full Text] [Related]
7. Brownian motion in inhomogeneous suspensions. Yang M; Ripoll M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062110. PubMed ID: 23848630 [TBL] [Abstract][Full Text] [Related]
8. Colored-noise Fokker-Planck equation for the shear-induced self-diffusion process of non-Brownian particles. Lukassen LJ; Oberlack M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052145. PubMed ID: 25353777 [TBL] [Abstract][Full Text] [Related]
9. Survival probabilities and first-passage distributions of self-propelled particles in spherical cavities. Cherayil BJ Phys Rev E; 2023 Nov; 108(5-1):054607. PubMed ID: 38115486 [TBL] [Abstract][Full Text] [Related]
10. Time-dependent inertia of self-propelled particles: The Langevin rocket. Sprenger AR; Jahanshahi S; Ivlev AV; Löwen H Phys Rev E; 2021 Apr; 103(4-1):042601. PubMed ID: 34005997 [TBL] [Abstract][Full Text] [Related]
11. Entropy production of a Brownian ellipsoid in the overdamped limit. Marino R; Eichhorn R; Aurell E Phys Rev E; 2016 Jan; 93(1):012132. PubMed ID: 26871049 [TBL] [Abstract][Full Text] [Related]
13. Dynamics of active particles with translational and rotational inertia. Sprenger AR; Caprini L; Löwen H; Wittmann R J Phys Condens Matter; 2023 Apr; 35(30):. PubMed ID: 37059111 [TBL] [Abstract][Full Text] [Related]
14. Work and heat distributions of an inertial Brownian particle. Colmenares PJ Phys Rev E; 2022 Apr; 105(4-1):044109. PubMed ID: 35590566 [TBL] [Abstract][Full Text] [Related]
15. Harmonically bound Brownian motion in fluids under shear: Fokker-Planck and generalized Langevin descriptions. Híjar H Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022139. PubMed ID: 25768490 [TBL] [Abstract][Full Text] [Related]
16. The effective temperature for the thermal fluctuations in hot Brownian motion. Srivastava M; Chakraborty D J Chem Phys; 2018 May; 148(20):204902. PubMed ID: 29865851 [TBL] [Abstract][Full Text] [Related]
17. Overdamped limit and inverse-friction expansion for Brownian motion in an inhomogeneous medium. Durang X; Kwon C; Park H Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062118. PubMed ID: 26172672 [TBL] [Abstract][Full Text] [Related]
18. Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion. Bodrova AS; Chechkin AV; Cherstvy AG; Safdari H; Sokolov IM; Metzler R Sci Rep; 2016 Jul; 6():30520. PubMed ID: 27462008 [TBL] [Abstract][Full Text] [Related]