These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 36266913)

  • 21. Phase separation and state oscillation of active inertial particles.
    Dai C; Bruss IR; Glotzer SC
    Soft Matter; 2020 Mar; 16(11):2847-2853. PubMed ID: 32104833
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inertial effects on the Brownian gyrator.
    Bae Y; Lee S; Kim J; Jeong H
    Phys Rev E; 2021 Mar; 103(3-1):032148. PubMed ID: 33862720
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inertial effects on rectification and diffusion of active Brownian particles in an asymmetric channel.
    Khatri N; Kapral R
    J Chem Phys; 2023 Mar; 158(12):124903. PubMed ID: 37003720
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microscopic derivation of the hydrodynamics of active-Brownian-particle suspensions.
    Steffenoni S; Falasco G; Kroy K
    Phys Rev E; 2017 May; 95(5-1):052142. PubMed ID: 28618517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Active particles in noninertial frames: How to self-propel on a carousel.
    Löwen H
    Phys Rev E; 2019 Jun; 99(6-1):062608. PubMed ID: 31330628
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oscillating modes of driven colloids in overdamped systems.
    Berner J; Müller B; Gomez-Solano JR; Krüger M; Bechinger C
    Nat Commun; 2018 Mar; 9(1):999. PubMed ID: 29519999
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Resonances arising from hydrodynamic memory in Brownian motion.
    Franosch T; Grimm M; Belushkin M; Mor FM; Foffi G; Forró L; Jeney S
    Nature; 2011 Oct; 478(7367):85-8. PubMed ID: 21979048
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generalized quantum Fokker-Planck, diffusion, and Smoluchowski equations with true probability distribution functions.
    Banik SK; Bag BC; Ray DS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 1):051106. PubMed ID: 12059528
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brownian motion of a self-propelled particle.
    ten Hagen B; van Teeffelen S; Löwen H
    J Phys Condens Matter; 2011 May; 23(19):194119. PubMed ID: 21525563
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Work fluctuations in a time-dependent harmonic potential: rigorous results beyond the overdamped limit.
    Kwon C; Noh JD; Park H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062102. PubMed ID: 24483381
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Translational and rotational dynamics of colloidal particles in suspension: effect of shear.
    Hernández-Contreras M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Aug; 88(2):022317. PubMed ID: 24032842
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. II. Inertial models.
    Chavanis PH; Sire C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066104. PubMed ID: 16906911
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fokker-Planck equation for Boltzmann-type and active particles: transfer probability approach.
    Trigger SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Apr; 67(4 Pt 2):046403. PubMed ID: 12786497
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fokker-Planck equation for the non-Markovian Brownian motion in the presence of a magnetic field.
    Das J; Mondal S; Bag BC
    J Chem Phys; 2017 Oct; 147(16):164102. PubMed ID: 29096482
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Brownian colloidal particles: Ito, Stratonovich, or a different stochastic interpretation.
    Sancho JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):062102. PubMed ID: 22304133
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Global density equations for interacting particle systems with stochastic resetting: From overdamped Brownian motion to phase synchronization.
    Bressloff PC
    Chaos; 2024 Apr; 34(4):. PubMed ID: 38558049
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stationary states of an active Brownian particle in a harmonic trap.
    Nakul U; Gopalakrishnan M
    Phys Rev E; 2023 Aug; 108(2-1):024121. PubMed ID: 37723685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Generalized Fokker-Planck equation, Brownian motion, and ergodicity.
    Plyukhin AV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061136. PubMed ID: 18643246
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fokker-Planck-Kramers equation for a Brownian gas in a magnetic field.
    Jiménez-Aquino JI; Romero-Bastida M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041117. PubMed ID: 17155032
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adiabatic elimination of inertia of the stochastic microswimmer driven by α-stable noise.
    Noetel J; Sokolov IM; Schimansky-Geier L
    Phys Rev E; 2017 Oct; 96(4-1):042610. PubMed ID: 29347544
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.