These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

465 related articles for article (PubMed ID: 36266983)

  • 1. Heterostructure Engineering of 2D Superlattice Materials for Electrocatalysis.
    Zhang Z; Liu P; Song Y; Hou Y; Xu B; Liao T; Zhang H; Guo J; Sun Z
    Adv Sci (Weinh); 2022 Dec; 9(35):e2204297. PubMed ID: 36266983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic Structure Tuning of 2D Metal (Hydr)oxides Nanosheets for Electrocatalysis.
    Song Y; Xu B; Liao T; Guo J; Wu Y; Sun Z
    Small; 2021 Mar; 17(9):e2002240. PubMed ID: 32851763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advances in Engineering of 2D Materials-Based Heterostructures for Electrochemical Energy Conversion.
    Zhang Y; Nie K; Yi L; Li B; Yuan Y; Liu Z; Huang W
    Adv Sci (Weinh); 2023 Nov; 10(31):e2302301. PubMed ID: 37743245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoarchitectonics of Metallene Materials for Electrocatalysis.
    Jiang B; Guo Y; Sun F; Wang S; Kang Y; Xu X; Zhao J; You J; Eguchi M; Yamauchi Y; Li H
    ACS Nano; 2023 Jul; 17(14):13017-13043. PubMed ID: 37367960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MoirĂ© Superlattice Structure in Two-Dimensional Catalysts: Synthesis, Property and Activity.
    Wang L; Yin S; Yang J; Dou SX
    Small; 2023 Jul; 19(27):e2300165. PubMed ID: 36974572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron-Cluster-Directed Synthesis of 2D/2D Fe-N-C/MXene Superlattice-like Heterostructure with Enhanced Oxygen Reduction Electrocatalysis.
    Jiang L; Duan J; Zhu J; Chen S; Antonietti M
    ACS Nano; 2020 Feb; 14(2):2436-2444. PubMed ID: 31986009
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced Oxygen Electrocatalyst for Air-Breathing Electrode in Zn-Air Batteries.
    Kundu A; Mallick S; Ghora S; Raj CR
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40172-40199. PubMed ID: 34424683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of 2D Graphene Materials for Electrocatalysis.
    Zhang X; Gao J; Xiao Y; Wang J; Sun G; Zhao Y; Qu L
    Chem Asian J; 2020 Aug; 15(15):2271-2281. PubMed ID: 32227581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-Organic Frameworks and Metal-Organic Gels for Oxygen Electrocatalysis: Structural and Compositional Considerations.
    Wang H; Chen BH; Liu DJ
    Adv Mater; 2021 Jun; 33(25):e2008023. PubMed ID: 33984166
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent development of two-dimensional metal-organic framework derived electrocatalysts for hydrogen and oxygen electrocatalysis.
    Wu H; Wang J; Jin W; Wu Z
    Nanoscale; 2020 Sep; 12(36):18497-18522. PubMed ID: 32839807
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2D Transition Metal Dichalcogenides: Design, Modulation, and Challenges in Electrocatalysis.
    Fu Q; Han J; Wang X; Xu P; Yao T; Zhong J; Zhong W; Liu S; Gao T; Zhang Z; Xu L; Song B
    Adv Mater; 2021 Feb; 33(6):e1907818. PubMed ID: 32578254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emerging Two-Dimensional Carbonaceous Materials for Electrocatalytic Energy Conversions: Rational Design of Active Structures through High-Temperature Chemistry.
    Tian Z; Zhang Q; Liu T; Chen Y; Antonietti M
    ACS Nano; 2024 Feb; 18(8):6111-6129. PubMed ID: 38368617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single Atom on the 2D Matrix: An Emerging Electrocatalyst for Energy Applications.
    Mohanty B; Jena BK; Basu S
    ACS Omega; 2020 Jan; 5(3):1287-1295. PubMed ID: 32010797
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Active Site Engineering in Porous Electrocatalysts.
    Chen H; Liang X; Liu Y; Ai X; Asefa T; Zou X
    Adv Mater; 2020 Nov; 32(44):e2002435. PubMed ID: 32666550
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface/Interfacial Engineering of Inorganic Low-Dimensional Electrode Materials for Electrocatalysis.
    Chen P; Tong Y; Wu C; Xie Y
    Acc Chem Res; 2018 Nov; 51(11):2857-2866. PubMed ID: 30375850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Progress on Defect-rich Transition Metal Oxides and Their Energy-Related Applications.
    Wang Y; Liang Z; Zheng H; Cao R
    Chem Asian J; 2020 Nov; 15(22):3717-3736. PubMed ID: 32970393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-Dimensional Conjugated Metal-Organic Frameworks for Electrocatalysis: Opportunities and Challenges.
    Zhong H; Wang M; Chen G; Dong R; Feng X
    ACS Nano; 2022 Feb; 16(2):1759-1780. PubMed ID: 35049290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving the intrinsic activity of ultrathin 2D-2D heterostructures by bridge-bonded Ni-O-Ti ligands for efficient oxygen evolution.
    Xu C; Xiong F; Wang Y; Nai J; Zhang W
    Nanotechnology; 2023 Apr; 34(25):. PubMed ID: 36962944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanostructured Metal Borides for Energy-Related Electrocatalysis: Recent Progress, Challenges, and Perspectives.
    Pu Z; Liu T; Zhang G; Liu X; Gauthier MA; Chen Z; Sun S
    Small Methods; 2021 Oct; 5(10):e2100699. PubMed ID: 34927953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.