These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

371 related articles for article (PubMed ID: 36267450)

  • 1. Nanocellulose/two dimensional nanomaterials composites for advanced supercapacitor electrodes.
    Liang Q; Wang Y; Yang Y; Xu T; Xu Y; Zhao Q; Heo SH; Kim MS; Jeong YH; Yao S; Song X; Choi SE; Si C
    Front Bioeng Biotechnol; 2022; 10():1024453. PubMed ID: 36267450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanocellulose-graphene composites: A promising nanomaterial for flexible supercapacitors.
    Xing J; Tao P; Wu Z; Xing C; Liao X; Nie S
    Carbohydr Polym; 2019 Mar; 207():447-459. PubMed ID: 30600028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocellulose-graphene composites: Preparation and applications in flexible electronics.
    Yang H; Zheng H; Duan Y; Xu T; Xie H; Du H; Si C
    Int J Biol Macromol; 2023 Dec; 253(Pt 3):126903. PubMed ID: 37714239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advanced Nanocellulose-Based Composites for Flexible Functional Energy Storage Devices.
    Xu T; Du H; Liu H; Liu W; Zhang X; Si C; Liu P; Zhang K
    Adv Mater; 2021 Dec; 33(48):e2101368. PubMed ID: 34561914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocellulose toward Advanced Energy Storage Devices: Structure and Electrochemistry.
    Chen C; Hu L
    Acc Chem Res; 2018 Dec; 51(12):3154-3165. PubMed ID: 30299086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-chargeable supercapacitor made with MXene-bacterial cellulose nanofiber composite for wearable devices.
    Weng M; Zhou J; Ye Y; Qiu H; Zhou P; Luo Z; Guo Q
    J Colloid Interface Sci; 2023 Oct; 647():277-286. PubMed ID: 37262990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanocellulose-based aerogel electrodes for supercapacitors: A review.
    Nargatti KI; Subhedar AR; Ahankari SS; Grace AN; Dufresne A
    Carbohydr Polym; 2022 Dec; 297():120039. PubMed ID: 36184147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanocellulose-Based Conductive Membranes for Free-Standing Supercapacitors: A Review.
    Hsu HH; Zhong W
    Membranes (Basel); 2019 Jun; 9(6):. PubMed ID: 31242574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stretchable Supercapacitors: From Materials and Structures to Devices.
    Shao G; Yu R; Chen N; Ye M; Liu XY
    Small Methods; 2021 Jan; 5(1):e2000853. PubMed ID: 34927805
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ti
    Zhou Y; Maleski K; Anasori B; Thostenson JO; Pang Y; Feng Y; Zeng K; Parker CB; Zauscher S; Gogotsi Y; Glass JT; Cao C
    ACS Nano; 2020 Mar; 14(3):3576-3586. PubMed ID: 32049485
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Borocarbonitride-Based Emerging Materials for Supercapacitor Applications: Recent Advances, Challenges, and Future Perspectives.
    Radhakrishnan S; Patra A; Manasa G; Belgami MA; Mun Jeong S; Rout CS
    Adv Sci (Weinh); 2024 Jan; 11(4):e2305325. PubMed ID: 38009510
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Progress of Electrode Architecture for MXene/MoS
    Kosnan MA; Azam MA; Safie NE; Munawar RF; Takasaki A
    Micromachines (Basel); 2022 Oct; 13(11):. PubMed ID: 36363860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent advances in MXene-based nanocomposites for supercapacitors.
    Yi S; Wang L; Zhang X; Li C; Xu Y; Wang K; Sun X; Ma Y
    Nanotechnology; 2023 Aug; 34(43):. PubMed ID: 37467737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanocellulose-Enabled, All-Nanofiber, High-Performance Supercapacitor.
    Zhang Q; Chen C; Chen W; Pastel G; Guo X; Liu S; Wang Q; Liu Y; Li J; Yu H; Hu L
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5919-5927. PubMed ID: 30657318
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advanced functional materials based on nanocellulose/Mxene: A review.
    Al-Fakih GOA; Ilyas RA; Atiqah A; Atikah MSN; Saidur R; Dufresne A; Saharudin MS; Abral H; Sapuan SM
    Int J Biol Macromol; 2024 Oct; 278(Pt 4):135207. PubMed ID: 39256123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Review of Supercapacitors Based on Graphene and Redox-Active Organic Materials.
    Li Q; Horn M; Wang Y; MacLeod J; Motta N; Liu J
    Materials (Basel); 2019 Feb; 12(5):. PubMed ID: 30818843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unconventional supercapacitors from nanocarbon-based electrode materials to device configurations.
    Liu L; Niu Z; Chen J
    Chem Soc Rev; 2016 Jul; 45(15):4340-63. PubMed ID: 27263796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation, Marriage Chemistry and Applications of Graphene Quantum Dots-Nanocellulose Composite: A Brief Review.
    Danial WH; Md Bahri NF; Abdul Majid Z
    Molecules; 2021 Oct; 26(20):. PubMed ID: 34684739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors.
    Xu Y; Shi G; Duan X
    Acc Chem Res; 2015 Jun; 48(6):1666-75. PubMed ID: 26042764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D Printing MXene-Based Electrodes for Supercapacitors.
    Jiang X; Bai J; Wijerathne B; Zhou Q; Zhang F; Liao T; Sun Z
    Chem Asian J; 2024 Dec; 19(23):e202400568. PubMed ID: 39155268
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.