These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 36267451)

  • 1. A detailed methodology to model the Non Contact Tonometry: a Fluid Structure Interaction study.
    Redaelli E; Grasa J; Calvo B; Rodriguez Matas JF; Luraghi G
    Front Bioeng Biotechnol; 2022; 10():981665. PubMed ID: 36267451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of Air Puff Tonometry Test Using Arbitrary Lagrangian-Eulerian (ALE) Deforming Mesh for Corneal Material Characterisation.
    Maklad O; Eliasy A; Chen KJ; Theofilis V; Elsheikh A
    Int J Environ Res Public Health; 2019 Dec; 17(1):. PubMed ID: 31861736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Patient-specific air puff-induced loading using machine learning.
    Desouky NA; Saafan MM; Mansour MH; Maklad OM
    Front Bioeng Biotechnol; 2023; 11():1277970. PubMed ID: 38026883
    [No Abstract]   [Full Text] [Related]  

  • 4. Non-contact tonometry: predicting intraocular pressure using a material-corneal thickness-independent methodology.
    Redaelli E; Calvo B; Rodriguez Matas JF; Luraghi G; Grasa J
    Front Bioeng Biotechnol; 2024; 12():1406870. PubMed ID: 39119274
    [No Abstract]   [Full Text] [Related]  

  • 5. Coupled biomechanical response of the cornea assessed by non-contact tonometry. A simulation study.
    Ariza-Gracia MÁ; Zurita JF; Piñero DP; Rodriguez-Matas JF; Calvo B
    PLoS One; 2015; 10(3):e0121486. PubMed ID: 25780915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical Impact of the Sclera on Corneal Deformation Response to an Air-Puff: A Finite-Element Study.
    Nguyen BA; Roberts CJ; Reilly MA
    Front Bioeng Biotechnol; 2018; 6():210. PubMed ID: 30687701
    [No Abstract]   [Full Text] [Related]  

  • 7. Influence of the eye globe design on biomechanical analysis.
    Issarti I; Koppen C; Rozema JJ
    Comput Biol Med; 2021 Aug; 135():104612. PubMed ID: 34261005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomechanical contribution of the sclera to dynamic corneal response in air-puff induced deformation in human donor eyes.
    Nguyen BA; Reilly MA; Roberts CJ
    Exp Eye Res; 2020 Feb; 191():107904. PubMed ID: 31883460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluid-Structure Interaction Based Algorithms for IOP and Corneal Material Behavior.
    Maklad O; Eliasy A; Chen KJ; Wang J; Abass A; Lopes BT; Theofilis V; Elsheikh A
    Front Bioeng Biotechnol; 2020; 8():970. PubMed ID: 32984273
    [No Abstract]   [Full Text] [Related]  

  • 10. The influence of intraocular pressure and air jet pressure on corneal contactless tonometry tests.
    Simonini I; Pandolfi A
    J Mech Behav Biomed Mater; 2016 May; 58():75-89. PubMed ID: 26282384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of corneal and fatty tissues biomechanical response in dynamic tonometry tests by using inverse models.
    Jannesari M; Kadkhodaei M; Mosaddegh P; Kasprzak H; Behrouz MJ
    Acta Bioeng Biomech; 2018; 20(1):39-48. PubMed ID: 29658515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanics of the keratoconic cornea: Theory, segmentation, pressure distribution, and coupled FE-optimization algorithm.
    Rahmati SM; Razaghi R; Karimi A
    J Mech Behav Biomed Mater; 2021 Jan; 113():104155. PubMed ID: 33125958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Material Properties from Air Puff Corneal Deformation by Numerical Simulations on Model Corneas.
    Bekesi N; Dorronsoro C; de la Hoz A; Marcos S
    PLoS One; 2016; 11(10):e0165669. PubMed ID: 27792759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Importance of accurately assessing biomechanics of the cornea.
    Roberts CJ
    Curr Opin Ophthalmol; 2016 Jul; 27(4):285-91. PubMed ID: 27152485
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corneal viscoelastic properties from finite-element analysis of in vivo air-puff deformation.
    Kling S; Bekesi N; Dorronsoro C; Pascual D; Marcos S
    PLoS One; 2014; 9(8):e104904. PubMed ID: 25121496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverse solution of corneal material parameters based on non-contact tonometry: A comparative study of different constitutive models.
    Huang L; Shen M; Liu T; Zhang Y; Wang Y
    J Biomech; 2020 Nov; 112():110055. PubMed ID: 33039923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [New measuring method of non-contact tonometry].
    Plagwitz KU; Lemke K
    Klin Monbl Augenheilkd; 1999 Jan; 214(1):40-3. PubMed ID: 10198881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic Optical Coherence Elastography of the Anterior Eye: Understanding the Biomechanics of the Limbus.
    Zvietcovich F; Nair A; Singh M; Aglyamov SR; Twa MD; Larin KV
    Invest Ophthalmol Vis Sci; 2020 Nov; 61(13):7. PubMed ID: 33141893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Air-puff associated quantification of non-linear biomechanical properties of the human cornea in vivo.
    Sinha Roy A; Kurian M; Matalia H; Shetty R
    J Mech Behav Biomed Mater; 2015 Aug; 48():173-182. PubMed ID: 25955559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Determination of Corneal Biomechanical Behavior
    Eliasy A; Chen KJ; Vinciguerra R; Lopes BT; Abass A; Vinciguerra P; Ambrósio R; Roberts CJ; Elsheikh A
    Front Bioeng Biotechnol; 2019; 7():105. PubMed ID: 31157217
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.