BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 36267540)

  • 1. An Update on Novel Ocular Nanosystems with Possible Benefits in the Treatment of Corneal Neovascularization.
    Zhang C; Yin Y; Zhao J; Li Y; Wang Y; Zhang Z; Niu L; Zheng Y
    Int J Nanomedicine; 2022; 17():4911-4931. PubMed ID: 36267540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Up-to-date molecular medicine strategies for management of ocular surface neovascularization.
    Yang Y; Zhong J; Cui D; Jensen LD
    Adv Drug Deliv Rev; 2023 Oct; 201():115084. PubMed ID: 37689278
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene-based antiangiogenic applications for corneal neovascularization.
    Liu S; Romano V; Steger B; Kaye SB; Hamill KJ; Willoughby CE
    Surv Ophthalmol; 2018; 63(2):193-213. PubMed ID: 29080632
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Available Therapeutic Options for Corneal Neovascularization: A Review.
    Drzyzga Ł; Śpiewak D; Dorecka M; Wyględowska-Promieńska D
    Int J Mol Sci; 2024 May; 25(10):. PubMed ID: 38791518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent drug therapies for corneal neovascularization.
    Liu X; Wang S; Wang X; Liang J; Zhang Y
    Chem Biol Drug Des; 2017 Nov; 90(5):653-664. PubMed ID: 28489275
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel anti(lymph)angiogenic treatment strategies for corneal and ocular surface diseases.
    Bock F; Maruyama K; Regenfuss B; Hos D; Steven P; Heindl LM; Cursiefen C
    Prog Retin Eye Res; 2013 May; 34():89-124. PubMed ID: 23348581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting corneal inflammation by gene therapy: Emerging strategies for keratitis.
    Torrecilla J; Del Pozo-Rodríguez A; Vicente-Pascual M; Solinís MÁ; Rodríguez-Gascón A
    Exp Eye Res; 2018 Nov; 176():130-140. PubMed ID: 29981344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ocular neovascularization: Implication of endogenous angiogenic inhibitors and potential therapy.
    Zhang SX; Ma JX
    Prog Retin Eye Res; 2007 Jan; 26(1):1-37. PubMed ID: 17074526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological Potential of Small Molecules for Treating Corneal Neovascularization.
    Barry Z; Park B; Corson TW
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32751576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo effect of bevacizumab-loaded albumin nanoparticles in the treatment of corneal neovascularization.
    Luis de Redín I; Boiero C; Recalde S; Agüeros M; Allemandi D; Llabot JM; García-Layana A; Irache JM
    Exp Eye Res; 2019 Aug; 185():107697. PubMed ID: 31228461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corneal neovascularization: updates on pathophysiology, investigations & management.
    Sharif Z; Sharif W
    Rom J Ophthalmol; 2019; 63(1):15-22. PubMed ID: 31198893
    [No Abstract]   [Full Text] [Related]  

  • 12. Subconjunctival bevacizumab for corneal neovascularization.
    Zaki AA; Farid SF
    Acta Ophthalmol; 2010 Dec; 88(8):868-71. PubMed ID: 19519730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antiangiogenic effects of catalpol on rat corneal neovascularization.
    Han Y; Shen M; Tang LY; Tan G; Yang QC; Ye L; Ye LH; Jiang N; Gao GP; Shao Y
    Mol Med Rep; 2018 Feb; 17(2):2187-2194. PubMed ID: 29207076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current and emerging therapies for corneal neovascularization.
    Roshandel D; Eslani M; Baradaran-Rafii A; Cheung AY; Kurji K; Jabbehdari S; Maiz A; Jalali S; Djalilian AR; Holland EJ
    Ocul Surf; 2018 Oct; 16(4):398-414. PubMed ID: 29908870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of matrix metalloproteinases 2 and 9 in corneal neovascularization.
    Zhang J; Wang S; He Y; Yao B; Zhang Y
    Chem Biol Drug Des; 2020 May; 95(5):485-492. PubMed ID: 31002472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Treatments for corneal neovascularization: a review.
    Gupta D; Illingworth C
    Cornea; 2011 Aug; 30(8):927-38. PubMed ID: 21389854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atorvastatin-loaded peptide amphiphiles against corneal neovascularization.
    Sánchez-López E; Gómara MJ; Haro I
    Nanomedicine (Lond); 2023 Jul; 18(17):1095-1108. PubMed ID: 37610088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A SU6668 pure nanoparticle-based eyedrops: toward its high drug Accumulation and Long-time treatment for corneal neovascularization.
    Wu H; Ye J; Zhang M; Zhang L; Lin S; Li Q; Liu Y; Han Y; Huang C; Wu Y; Cheng Y; Cai S; Ke L; Liu G; Li W; Chu C
    J Nanobiotechnology; 2024 May; 22(1):290. PubMed ID: 38802884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corneal neovascularization.
    Nicholas MP; Mysore N
    Exp Eye Res; 2021 Jan; 202():108363. PubMed ID: 33221371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a naringenin microemulsion as a prospective ophthalmic delivery system for the treatment of corneal neovascularization:
    Ma Y; Yang J; Zhang Y; Zheng C; Liang Z; Lu P; Song F; Wang Y; Zhang J
    Drug Deliv; 2022 Dec; 29(1):111-127. PubMed ID: 34964414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.