These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 36267920)

  • 1. Muscle atrophy phenotype gene expression during spaceflight is linked to a metabolic crosstalk in both the liver and the muscle in mice.
    Vitry G; Finch R; Mcstay G; Behesti A; Déjean S; Larose T; Wotring V; da Silveira WA
    iScience; 2022 Oct; 25(10):105213. PubMed ID: 36267920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exposure to microgravity for 30 days onboard Bion M1 caused muscle atrophy and impaired regeneration in murine femoral Quadriceps.
    Radugina EA; Almeida EAC; Blaber E; Poplinskaya VA; Markitantova YV; Grigoryan EN
    Life Sci Space Res (Amst); 2018 Feb; 16():18-25. PubMed ID: 29475516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alternative splicing diversifies the skeletal muscle transcriptome during prolonged spaceflight.
    Henrich M; Ha P; Wang Y; Ting K; Stodieck L; Soo C; Adams JS; Chun R
    Skelet Muscle; 2022 May; 12(1):11. PubMed ID: 35642060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Response of the neuromuscular unit to spaceflight: what has been learned from the rat model.
    Roy RR; Baldwin KM; Edgerton VR
    Exerc Sport Sci Rev; 1996; 24():399-425. PubMed ID: 8744257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene-Metabolite Network Linked to Inhibited Bioenergetics in Association With Spaceflight-Induced Loss of Male Mouse Quadriceps Muscle.
    Chakraborty N; Waning DL; Gautam A; Hoke A; Sowe B; Youssef D; Butler S; Savaglio M; Childress PJ; Kumar R; Moyler C; Dimitrov G; Kacena MA; Hammamieh R
    J Bone Miner Res; 2020 Oct; 35(10):2049-2057. PubMed ID: 32511780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mammalian and Invertebrate Models as Complementary Tools for Gaining Mechanistic Insight on Muscle Responses to Spaceflight.
    Cahill T; Cope H; Bass JJ; Overbey EG; Gilbert R; da Silveira WA; Paul AM; Mishra T; Herranz R; Reinsch SS; Costes SV; Hardiman G; Szewczyk NJ; Tahimic CGT
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mimic microgravity effect on muscle transcriptome under ionizing radiation.
    Tran KN; Choi JI
    Life Sci Space Res (Amst); 2022 Feb; 32():96-104. PubMed ID: 35065767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Factors mediating spaceflight-induced skeletal muscle atrophy.
    Lee PHU; Chung M; Ren Z; Mair DB; Kim DH
    Am J Physiol Cell Physiol; 2022 Mar; 322(3):C567-C580. PubMed ID: 35171699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spaceflight Activates Autophagy Programs and the Proteasome in Mouse Liver.
    Blaber EA; Pecaut MJ; Jonscher KR
    Int J Mol Sci; 2017 Sep; 18(10):. PubMed ID: 28953266
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of spaceflight on murine skeletal muscle gene expression.
    Allen DL; Bandstra ER; Harrison BC; Thorng S; Stodieck LS; Kostenuik PJ; Morony S; Lacey DL; Hammond TG; Leinwand LL; Argraves WS; Bateman TA; Barth JL
    J Appl Physiol (1985); 2009 Feb; 106(2):582-95. PubMed ID: 19074574
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Skeletal muscle gene expression in space-flown rats.
    Nikawa T; Ishidoh K; Hirasaka K; Ishihara I; Ikemoto M; Kano M; Kominami E; Nonaka I; Ogawa T; Adams GR; Baldwin KM; Yasui N; Kishi K; Takeda S
    FASEB J; 2004 Mar; 18(3):522-4. PubMed ID: 14715702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circulating miRNA Spaceflight Signature Reveals Targets for Countermeasure Development.
    Malkani S; Chin CR; Cekanaviciute E; Mortreux M; Okinula H; Tarbier M; Schreurs AS; Shirazi-Fard Y; Tahimic CGT; Rodriguez DN; Sexton BS; Butler D; Verma A; Bezdan D; Durmaz C; MacKay M; Melnick A; Meydan C; Li S; Garrett-Bakelman F; Fromm B; Afshinnekoo E; Langhorst BW; Dimalanta ET; Cheng-Campbell M; Blaber E; Schisler JC; Vanderburg C; Friedländer MR; McDonald JT; Costes SV; Rutkove S; Grabham P; Mason CE; Beheshti A
    Cell Rep; 2020 Dec; 33(10):108448. PubMed ID: 33242410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical changes in the lumbar spine following spaceflight and factors associated with postspaceflight disc herniation.
    Bailey JF; Nyayapati P; Johnson GTA; Dziesinski L; Scheffler AW; Crawford R; Scheuring R; O'Neill CW; Chang D; Hargens AR; Lotz JC
    Spine J; 2022 Feb; 22(2):197-206. PubMed ID: 34343665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptomics, NF-κB Pathway, and Their Potential Spaceflight-Related Health Consequences.
    Zhang Y; Moreno-Villanueva M; Krieger S; Ramesh GT; Neelam S; Wu H
    Int J Mol Sci; 2017 May; 18(6):. PubMed ID: 28561779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive Multi-omics Analysis Reveals Mitochondrial Stress as a Central Biological Hub for Spaceflight Impact.
    da Silveira WA; Fazelinia H; Rosenthal SB; Laiakis EC; Kim MS; Meydan C; Kidane Y; Rathi KS; Smith SM; Stear B; Ying Y; Zhang Y; Foox J; Zanello S; Crucian B; Wang D; Nugent A; Costa HA; Zwart SR; Schrepfer S; Elworth RAL; Sapoval N; Treangen T; MacKay M; Gokhale NS; Horner SM; Singh LN; Wallace DC; Willey JS; Schisler JC; Meller R; McDonald JT; Fisch KM; Hardiman G; Taylor D; Mason CE; Costes SV; Beheshti A
    Cell; 2020 Nov; 183(5):1185-1201.e20. PubMed ID: 33242417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neuromuscular Electrical Stimulation as a Potential Countermeasure for Skeletal Muscle Atrophy and Weakness During Human Spaceflight.
    Maffiuletti NA; Green DA; Vaz MA; Dirks ML
    Front Physiol; 2019; 10():1031. PubMed ID: 31456697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regional muscle loss after short duration spaceflight.
    LeBlanc A; Rowe R; Schneider V; Evans H; Hedrick T
    Aviat Space Environ Med; 1995 Dec; 66(12):1151-4. PubMed ID: 8747608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Explainable machine learning identifies multi-omics signatures of muscle response to spaceflight in mice.
    Li K; Desai R; Scott RT; Steele JR; Machado M; Demharter S; Hoarfrost A; Braun JL; Fajardo VA; Sanders LM; Costes SV
    NPJ Microgravity; 2023 Dec; 9(1):90. PubMed ID: 38092777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of spaceflight and artificial gravity on sulfur metabolism in mouse liver: sulfur metabolomic and transcriptomic analysis.
    Kurosawa R; Sugimoto R; Imai H; Atsuji K; Yamada K; Kawano Y; Ohtsu I; Suzuki K
    Sci Rep; 2021 Nov; 11(1):21786. PubMed ID: 34750416
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organ-specific remodeling of the Arabidopsis transcriptome in response to spaceflight.
    Paul AL; Zupanska AK; Schultz ER; Ferl RJ
    BMC Plant Biol; 2013 Aug; 13():112. PubMed ID: 23919896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.