These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 36267920)

  • 41. Human skeletal muscle protein breakdown during spaceflight.
    Stein TP; Schluter MD
    Am J Physiol; 1997 Apr; 272(4 Pt 1):E688-95. PubMed ID: 9142892
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of spaceflight, simulated spaceflight and countermeasures on single muscle fiber physiology.
    Trappe S
    J Gravit Physiol; 2002 Jul; 9(1):P323-6. PubMed ID: 15002598
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Genetic dissection of the Arabidopsis spaceflight transcriptome: Are some responses dispensable for the physiological adaptation of plants to spaceflight?
    Paul AL; Sng NJ; Zupanska AK; Krishnamurthy A; Schultz ER; Ferl RJ
    PLoS One; 2017; 12(6):e0180186. PubMed ID: 28662188
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spaceflight and ageing: reflecting on Caenorhabditis elegans in space.
    Honda Y; Honda S; Narici M; Szewczyk NJ
    Gerontology; 2014; 60(2):138-42. PubMed ID: 24217152
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Lumbar Spine Paraspinal Muscle and Intervertebral Disc Height Changes in Astronauts After Long-Duration Spaceflight on the International Space Station.
    Chang DG; Healey RM; Snyder AJ; Sayson JV; Macias BR; Coughlin DG; Bailey JF; Parazynski SE; Lotz JC; Hargens AR
    Spine (Phila Pa 1976); 2016 Dec; 41(24):1917-1924. PubMed ID: 27779600
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spaceflight-Associated Changes in the Opacification of the Paranasal Sinuses and Mastoid Air Cells in Astronauts.
    Inglesby DC; Antonucci MU; Spampinato MV; Collins HR; Meyer TA; Schlosser RJ; Shimada K; Roberts DR
    JAMA Otolaryngol Head Neck Surg; 2020 Jun; 146(6):571-577. PubMed ID: 32215610
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Changes in apoptotic microRNA and mRNA expression profiling in Caenorhabditis elegans during the Shenzhou-8 mission.
    Gao Y; Li S; Xu D; Wang J; Sun Y
    J Radiat Res; 2015 Nov; 56(6):872-82. PubMed ID: 26286471
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Translating current biomedical therapies for long duration, deep space missions.
    Iosim S; MacKay M; Westover C; Mason CE
    Precis Clin Med; 2019 Dec; 2(4):259-269. PubMed ID: 31886035
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regulation of body fluid volume and electrolyte concentrations in spaceflight.
    Smith SM; Krauhs JM; Leach CS
    Adv Space Biol Med; 1997; 6():123-65. PubMed ID: 9048137
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular aspects of stress-gene regulation during spaceflight.
    Paul AL; Ferl RJ
    J Plant Growth Regul; 2002 Jun; 21(2):166-76. PubMed ID: 12024225
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Neurosurgery and spinal adaptations in spaceflight: A literature review.
    Lazzari ZT; Aria KM; Menger R
    Clin Neurol Neurosurg; 2021 Aug; 207():106755. PubMed ID: 34126454
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Review of primary spaceflight-induced and secondary reloading-induced changes in slow antigravity muscles of rats.
    Riley DA
    Adv Space Res; 1998; 21(8-9):1073-5. PubMed ID: 11541353
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Vibration mechanosignals superimposed to resistive exercise result in baseline skeletal muscle transcriptome profiles following chronic disuse in bed rest.
    Salanova M; Gambara G; Moriggi M; Vasso M; Ungethuem U; Belavý DL; Felsenberg D; Cerretelli P; Gelfi C; Blottner D
    Sci Rep; 2015 Nov; 5():17027. PubMed ID: 26596638
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional properties of slow and fast gastrocnemius muscle fibers after a 17-day spaceflight.
    Widrick JJ; Romatowski JG; Norenberg KM; Knuth ST; Bain JL; Riley DA; Trappe SW; Trappe TA; Costill DL; Fitts RH
    J Appl Physiol (1985); 2001 Jun; 90(6):2203-11. PubMed ID: 11356784
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cardiac atrophy after bed rest and spaceflight.
    Perhonen MA; Franco F; Lane LD; Buckey JC; Blomqvist CG; Zerwekh JE; Peshock RM; Weatherall PT; Levine BD
    J Appl Physiol (1985); 2001 Aug; 91(2):645-53. PubMed ID: 11457776
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Physiological and Functional Alterations after Spaceflight and Bed Rest.
    Mulavara AP; Peters BT; Miller CA; Kofman IS; Reschke MF; Taylor LC; Lawrence EL; Wood SJ; Laurie SS; Lee SMC; Buxton RE; May-Phillips TR; Stenger MB; Ploutz-Snyder LL; Ryder JW; Feiveson AH; Bloomberg JJ
    Med Sci Sports Exerc; 2018 Sep; 50(9):1961-1980. PubMed ID: 29620686
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Trends in Global Gene Expression in Mouse Embryonic Stem Cells During Spaceflight.
    An L; Li Y; Fan Y; He N; Ran F; Qu H; Wang Y; Zhao X; Ye C; Jiang Y; Fang X; Hang H
    Front Genet; 2019; 10():768. PubMed ID: 31552089
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparative transcriptomics indicate changes in cell wall organization and stress response in seedlings during spaceflight.
    Johnson CM; Subramanian A; Pattathil S; Correll MJ; Kiss JZ
    Am J Bot; 2017 Aug; 104(8):1219-1231. PubMed ID: 28827451
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Test of
    Barker R; Lombardino J; Rasmussen K; Gilroy S
    Front Plant Sci; 2020; 11():147. PubMed ID: 32265943
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multi-omics analysis of multiple missions to space reveal a theme of lipid dysregulation in mouse liver.
    Beheshti A; Chakravarty K; Fogle H; Fazelinia H; Silveira WAD; Boyko V; Polo SL; Saravia-Butler AM; Hardiman G; Taylor D; Galazka JM; Costes SV
    Sci Rep; 2019 Dec; 9(1):19195. PubMed ID: 31844325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.