BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 36268581)

  • 1. A new family of CRISPR-type V nucleases with C-rich PAM recognition.
    Urbaitis T; Gasiunas G; Young JK; Hou Z; Paulraj S; Godliauskaite E; Juskeviciene MM; Stitilyte M; Jasnauskaite M; Mabuchi M; Robb GB; Siksnys V
    EMBO Rep; 2022 Dec; 23(12):e55481. PubMed ID: 36268581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PAM recognition by miniature CRISPR-Cas12f nucleases triggers programmable double-stranded DNA target cleavage.
    Karvelis T; Bigelyte G; Young JK; Hou Z; Zedaveinyte R; Budre K; Paulraj S; Djukanovic V; Gasior S; Silanskas A; Venclovas Č; Siksnys V
    Nucleic Acids Res; 2020 May; 48(9):5016-5023. PubMed ID: 32246713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing?
    Gasiunas G; Siksnys V
    Trends Microbiol; 2013 Nov; 21(11):562-7. PubMed ID: 24095303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNA and DNA Targeting by a Reconstituted Thermus thermophilus Type III-A CRISPR-Cas System.
    Liu TY; Iavarone AT; Doudna JA
    PLoS One; 2017; 12(1):e0170552. PubMed ID: 28114398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Naked-eye detection of site-specific ssRNA and ssDNA using PAMmer-assisted CRISPR/Cas9 coupling with exponential amplification reaction.
    Wang X; Chen X; Chu C; Deng Y; Yang M; Huo D; Xu F; Hou C; Lv J
    Talanta; 2021 Oct; 233():122554. PubMed ID: 34215057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineered CRISPR-Cas9 nucleases with altered PAM specificities.
    Kleinstiver BP; Prew MS; Tsai SQ; Topkar VV; Nguyen NT; Zheng Z; Gonzales AP; Li Z; Peterson RT; Yeh JR; Aryee MJ; Joung JK
    Nature; 2015 Jul; 523(7561):481-5. PubMed ID: 26098369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A beginner's guide to gene editing.
    Harrison PT; Hart S
    Exp Physiol; 2018 Apr; 103(4):439-448. PubMed ID: 29282799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insights into target DNA recognition and cleavage by the CRISPR-Cas12c1 system.
    Zhang B; Lin J; Perčulija V; Li Y; Lu Q; Chen J; Ouyang S
    Nucleic Acids Res; 2022 Nov; 50(20):11820-11833. PubMed ID: 36321657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats.
    Mashimo T
    Dev Growth Differ; 2014 Jan; 56(1):46-52. PubMed ID: 24372523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Basis for the Altered PAM Recognition by Engineered CRISPR-Cpf1.
    Nishimasu H; Yamano T; Gao L; Zhang F; Ishitani R; Nureki O
    Mol Cell; 2017 Jul; 67(1):139-147.e2. PubMed ID: 28595896
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cas12n nucleases, early evolutionary intermediates of type V CRISPR, comprise a distinct family of miniature genome editors.
    Chen W; Ma J; Wu Z; Wang Z; Zhang H; Fu W; Pan D; Shi J; Ji Q
    Mol Cell; 2023 Aug; 83(15):2768-2780.e6. PubMed ID: 37402371
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-guided genome editing in plants using a CRISPR-Cas system.
    Xie K; Yang Y
    Mol Plant; 2013 Nov; 6(6):1975-83. PubMed ID: 23956122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9.
    Sternberg SH; Redding S; Jinek M; Greene EC; Doudna JA
    Nature; 2014 Mar; 507(7490):62-7. PubMed ID: 24476820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cas12a2 elicits abortive infection through RNA-triggered destruction of dsDNA.
    Dmytrenko O; Neumann GC; Hallmark T; Keiser DJ; Crowley VM; Vialetto E; Mougiakos I; Wandera KG; Domgaard H; Weber J; Gaudin T; Metcalf J; Gray BN; Begemann MB; Jackson RN; Beisel CL
    Nature; 2023 Jan; 613(7944):588-594. PubMed ID: 36599979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homology-Independent Integration of Plasmid DNA into the Zebrafish Genome.
    Auer TO; Del Bene F
    Methods Mol Biol; 2016; 1451():31-51. PubMed ID: 27464799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The compact Casπ (Cas12l) 'bracelet' provides a unique structural platform for DNA manipulation.
    Sun A; Li CP; Chen Z; Zhang S; Li DY; Yang Y; Li LQ; Zhao Y; Wang K; Li Z; Liu J; Liu S; Wang J; Liu JG
    Cell Res; 2023 Mar; 33(3):229-244. PubMed ID: 36650285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [CRISPR/Cas9 technology in disease research and therapy: a review].
    Shi M; Shen Z; Zhang N; Wang L; Yu C; Yang Z
    Sheng Wu Gong Cheng Xue Bao; 2021 Apr; 37(4):1205-1228. PubMed ID: 33973436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trans-nuclease activity of Cas9 activated by DNA or RNA target binding.
    Chen J; Chen Y; Huang L; Lin X; Chen H; Xiang W; Liu L
    Nat Biotechnol; 2024 May; ():. PubMed ID: 38811761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative assessments of CRISPR-Cas nucleases' cleavage efficiency in planta.
    Johnson RA; Gurevich V; Filler S; Samach A; Levy AA
    Plant Mol Biol; 2015 Jan; 87(1-2):143-56. PubMed ID: 25403732
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mb- and FnCpf1 nucleases are active in mammalian cells: activities and PAM preferences of four wild-type Cpf1 nucleases and of their altered PAM specificity variants.
    Tóth E; Czene BC; Kulcsár PI; Krausz SL; Tálas A; Nyeste A; Varga É; Huszár K; Weinhardt N; Ligeti Z; Borsy AÉ; Fodor E; Welker E
    Nucleic Acids Res; 2018 Nov; 46(19):10272-10285. PubMed ID: 30239882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.