BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 36268581)

  • 21. Improving CRISPR Gene Editing Efficiency by Proximal dCas9 Targeting.
    Chen F; Ding X; Feng Y; Seebeck T; Jiang Y; Davis GD
    Bio Protoc; 2017 Aug; 7(15):e2432. PubMed ID: 34541154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular architectures and mechanisms of Class 2 CRISPR-associated nucleases.
    Garcia-Doval C; Jinek M
    Curr Opin Struct Biol; 2017 Dec; 47():157-166. PubMed ID: 29107822
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protospacer Adjacent Motif-Induced Allostery Activates CRISPR-Cas9.
    Palermo G; Ricci CG; Fernando A; Basak R; Jinek M; Rivalta I; Batista VS; McCammon JA
    J Am Chem Soc; 2017 Nov; 139(45):16028-16031. PubMed ID: 28764328
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Applications of Alternative Nucleases in the Age of CRISPR/Cas9.
    Guha TK; Edgell DR
    Int J Mol Sci; 2017 Nov; 18(12):. PubMed ID: 29186020
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [The new generation tool for CRISPR genome editing: CRISPR/Cpf1].
    Yang F; Li Y
    Sheng Wu Gong Cheng Xue Bao; 2017 Mar; 33(3):361-371. PubMed ID: 28941336
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deciphering, Communicating, and Engineering the CRISPR PAM.
    Leenay RT; Beisel CL
    J Mol Biol; 2017 Jan; 429(2):177-191. PubMed ID: 27916599
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes.
    Ma E; Harrington LB; O'Connell MR; Zhou K; Doudna JA
    Mol Cell; 2015 Nov; 60(3):398-407. PubMed ID: 26545076
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cas9 specifies functional viral targets during CRISPR-Cas adaptation.
    Heler R; Samai P; Modell JW; Weiner C; Goldberg GW; Bikard D; Marraffini LA
    Nature; 2015 Mar; 519(7542):199-202. PubMed ID: 25707807
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR/Cas9 technology as a potent molecular tool for gene therapy.
    Karimian A; Azizian K; Parsian H; Rafieian S; Shafiei-Irannejad V; Kheyrollah M; Yousefi M; Majidinia M; Yousefi B
    J Cell Physiol; 2019 Aug; 234(8):12267-12277. PubMed ID: 30697727
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells.
    Kim D; Kim J; Hur JK; Been KW; Yoon SH; Kim JS
    Nat Biotechnol; 2016 Aug; 34(8):863-8. PubMed ID: 27272384
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cas9-NG Greatly Expands the Targeting Scope of the Genome-Editing Toolkit by Recognizing NG and Other Atypical PAMs in Rice.
    Ren B; Liu L; Li S; Kuang Y; Wang J; Zhang D; Zhou X; Lin H; Zhou H
    Mol Plant; 2019 Jul; 12(7):1015-1026. PubMed ID: 30928635
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRISPR-Cas9 Based Genome Editing in Wheat.
    Smedley MA; Hayta S; Clarke M; Harwood WA
    Curr Protoc; 2021 Mar; 1(3):e65. PubMed ID: 33687760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. CRISPR/Cas9 for genome editing: progress, implications and challenges.
    Zhang F; Wen Y; Guo X
    Hum Mol Genet; 2014 Sep; 23(R1):R40-6. PubMed ID: 24651067
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CRISPR-Cas9 system: A new-fangled dawn in gene editing.
    Gupta D; Bhattacharjee O; Mandal D; Sen MK; Dey D; Dasgupta A; Kazi TA; Gupta R; Sinharoy S; Acharya K; Chattopadhyay D; Ravichandiran V; Roy S; Ghosh D
    Life Sci; 2019 Sep; 232():116636. PubMed ID: 31295471
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome Editing: A New Horizon for Oral and Craniofacial Research.
    Yu N; Yang J; Mishina Y; Giannobile WV
    J Dent Res; 2019 Jan; 98(1):36-45. PubMed ID: 30354846
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA targeting by subtype I-D CRISPR-Cas shows type I and type III features.
    Lin J; Fuglsang A; Kjeldsen AL; Sun K; Bhoobalan-Chitty Y; Peng X
    Nucleic Acids Res; 2020 Oct; 48(18):10470-10478. PubMed ID: 32960267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome editing in plants using CRISPR type I-D nuclease.
    Osakabe K; Wada N; Miyaji T; Murakami E; Marui K; Ueta R; Hashimoto R; Abe-Hara C; Kong B; Yano K; Osakabe Y
    Commun Biol; 2020 Nov; 3(1):648. PubMed ID: 33159140
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SpCas9- and LbCas12a-Mediated DNA Editing Produce Different Gene Knockout Outcomes in Zebrafish Embryos.
    Meshalkina DA; Glushchenko AS; Kysil EV; Mizgirev IV; Frolov A
    Genes (Basel); 2020 Jul; 11(7):. PubMed ID: 32635161
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Basics of genome editing technology and its application in livestock species.
    Petersen B
    Reprod Domest Anim; 2017 Aug; 52 Suppl 3():4-13. PubMed ID: 28815851
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of CRISPR/Cas9 genome editing to the study and treatment of disease.
    Pellagatti A; Dolatshad H; Valletta S; Boultwood J
    Arch Toxicol; 2015 Jul; 89(7):1023-34. PubMed ID: 25827103
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.