These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 36268641)

  • 1. Revitalizing zinc-ion batteries with advanced zinc anode design.
    Chen S; Wang H; Zhu M; You F; Lin W; Chan D; Lin W; Li P; Tang Y; Zhang Y
    Nanoscale Horiz; 2022 Dec; 8(1):29-54. PubMed ID: 36268641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent Progress in Aqueous Zinc-ion Batteries at High Zinc Utilization.
    Han Y; Yan Z; Zhang L; Zhu Z
    ChemSusChem; 2024 Jul; ():e202401166. PubMed ID: 39030787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward Long-Life Aqueous Zinc Ion Batteries by Constructing Stable Zinc Anodes.
    Liu Y; Liu Y; Wu X
    Chem Rec; 2022 Oct; 22(10):e202200088. PubMed ID: 35652535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial Engineering Strategy for High-Performance Zn Metal Anodes.
    Li B; Zhang X; Wang T; He Z; Lu B; Liang S; Zhou J
    Nanomicro Lett; 2021 Dec; 14(1):6. PubMed ID: 34859312
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design Strategies toward High-Performance Zn Metal Anode.
    Nie W; Cheng H; Sun Q; Liang S; Lu X; Lu B; Zhou J
    Small Methods; 2024 Jun; 8(6):e2201572. PubMed ID: 36840645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strategies for Optimizing the Zn Anode/Electrolyte Interfaces Toward Stable Zn-Based Batteries.
    Gao J; Xie Y; Zeng P; Zhang L
    Small Methods; 2023 Nov; 7(11):e2300855. PubMed ID: 37702129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A strategy for anode modification for future zinc-based battery application.
    Zhou LF; Du T; Li JY; Wang YS; Gong H; Yang QR; Chen H; Luo WB; Wang JZ
    Mater Horiz; 2022 Oct; 9(11):2722-2751. PubMed ID: 36196916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-Cost Aqueous Electrolyte with MBA Additives for Uniform and Stable Zinc Deposition.
    Chen W; Xie Z; Chen H; Wang X
    ACS Appl Mater Interfaces; 2024 Jun; 16(23):30580-30588. PubMed ID: 38822788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial Reconstruction for Regulating Zn
    Yang C; Zhang X; Cao J; Zhang D; Kidkhunthod P; Wannapaiboon S; Qin J
    ACS Appl Mater Interfaces; 2023 Jun; 15(22):26718-26727. PubMed ID: 37218675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bio-based functional separator enables dendrite-free anodes in aqueous zinc-ion batteries.
    Zhang H; Li J; Ren H; Wang J; Gong Y; Wang B; Wang D; Liu H; Dou S
    iScience; 2024 Jul; 27(7):110237. PubMed ID: 38993664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zn Metal Anodes for Zn-Ion Batteries in Mild Aqueous Electrolytes: Challenges and Strategies.
    Hoang Huy VP; Hieu LT; Hur J
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives.
    Yang J; Yin B; Sun Y; Pan H; Sun W; Jia B; Zhang S; Ma T
    Nanomicro Lett; 2022 Jan; 14(1):42. PubMed ID: 34981202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uniform zinc-ion deposition regulated by thin sulfonated poly(ether ketone) layer for Stabilizing Zn anodes.
    Song B; Wang X; Gao H; Gao W; Ma X
    Nanotechnology; 2023 Oct; 35(2):. PubMed ID: 37820634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress and Prospect of Zn Anode Modification in Aqueous Zinc-Ion Batteries: Experimental and Theoretical Aspects.
    Feng K; Wang D; Yu Y
    Molecules; 2023 Mar; 28(6):. PubMed ID: 36985693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Progress in Aqueous Zinc-Ion Batteries: From FundamentalScience to Structure Design.
    Wang T; Zhang Y; You J; Hu F
    Chem Rec; 2023 May; 23(5):e202200309. PubMed ID: 36974578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Electrochemical Perspective of Aqueous Zinc Metal Anode.
    Yan H; Li S; Zhong J; Li B
    Nanomicro Lett; 2023 Nov; 16(1):15. PubMed ID: 37975948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards Superior Aqueous Zinc-Ion Batteries: The Insights of Artificial Protective Interfaces.
    Farooq A; Zhao R; Han X; Yang J; Hu Z; Wu C; Bai Y
    ChemSusChem; 2024 Oct; 17(20):e202301942. PubMed ID: 38735842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anode Materials for Aqueous Zinc Ion Batteries: Mechanisms, Properties, and Perspectives.
    Wang T; Li C; Xie X; Lu B; He Z; Liang S; Zhou J
    ACS Nano; 2020 Dec; 14(12):16321-16347. PubMed ID: 33314908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancing Anode Performance in Aqueous Zinc-Ion Batteries: A Review of Metal-Organic Framework-Based Strategies.
    Li J; Wang B; Wang S; Li W; Chen D
    ChemSusChem; 2024 Aug; ():e202401217. PubMed ID: 39087441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superabsorbent starch protective layer modulates zinc anode interface for long-life aqueous zinc ion batteries.
    Zhu X; Pan L; Peng Z; Li B; Zhang Z; Zhao N; Meng W; Dai L; Wang L; Zhu J; He Z
    J Colloid Interface Sci; 2025 Jan; 677(Pt A):1029-1036. PubMed ID: 39134077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.