These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 36268656)
1. Structure of the major oxidative damage 7,8-dihydro-8-oxoguanine presented into a catalytically competent DNA glycosylase. Schmaltz LF; Ceniceros JE; Lee S Biochem J; 2022 Nov; 479(21):2297-2309. PubMed ID: 36268656 [TBL] [Abstract][Full Text] [Related]
2. Structural Insight into the Discrimination between 8-Oxoguanine Glycosidic Conformers by DNA Repair Enzymes: A Molecular Dynamics Study of Human Oxoguanine Glycosylase 1 and Formamidopyrimidine-DNA Glycosylase. Sowlati-Hashjin S; Wetmore SD Biochemistry; 2018 Feb; 57(7):1144-1154. PubMed ID: 29320630 [TBL] [Abstract][Full Text] [Related]
4. Catalytic and DNA-binding properties of the human Ogg1 DNA N-glycosylase/AP lyase: biochemical exploration of H270, Q315 and F319, three amino acids of the 8-oxoguanine-binding pocket. van der Kemp PA; Charbonnier JB; Audebert M; Boiteux S Nucleic Acids Res; 2004; 32(2):570-8. PubMed ID: 14752045 [TBL] [Abstract][Full Text] [Related]
5. Step-by-step mechanism of DNA damage recognition by human 8-oxoguanine DNA glycosylase. Kuznetsova AA; Kuznetsov NA; Ishchenko AA; Saparbaev MK; Fedorova OS Biochim Biophys Acta; 2014 Jan; 1840(1):387-95. PubMed ID: 24096108 [TBL] [Abstract][Full Text] [Related]
6. Molecular dynamics simulation of the opposite-base preference and interactions in the active site of formamidopyrimidine-DNA glycosylase. Popov AV; Endutkin AV; Vorobjev YN; Zharkov DO BMC Struct Biol; 2017 May; 17(1):5. PubMed ID: 28482831 [TBL] [Abstract][Full Text] [Related]
7. Repair activities of human 8-oxoguanine DNA glycosylase are stimulated by the interaction with human checkpoint sensor Rad9-Rad1-Hus1 complex. Park MJ; Park JH; Hahm SH; Ko SI; Lee YR; Chung JH; Sohn SY; Cho Y; Kang LW; Han YS DNA Repair (Amst); 2009 Oct; 8(10):1190-200. PubMed ID: 19615952 [TBL] [Abstract][Full Text] [Related]
8. Distinct repair activities of human 7,8-dihydro-8-oxoguanine DNA glycosylase and formamidopyrimidine DNA glycosylase for formamidopyrimidine and 7,8-dihydro-8-oxoguanine. Asagoshi K; Yamada T; Terato H; Ohyama Y; Monden Y; Arai T; Nishimura S; Aburatani H; Lindahl T; Ide H J Biol Chem; 2000 Feb; 275(7):4956-64. PubMed ID: 10671534 [TBL] [Abstract][Full Text] [Related]
9. Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Bruner SD; Norman DP; Verdine GL Nature; 2000 Feb; 403(6772):859-66. PubMed ID: 10706276 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of stimulation of the DNA glycosylase activity of hOGG1 by the major human AP endonuclease: bypass of the AP lyase activity step. Vidal AE; Hickson ID; Boiteux S; Radicella JP Nucleic Acids Res; 2001 Mar; 29(6):1285-92. PubMed ID: 11238994 [TBL] [Abstract][Full Text] [Related]
11. The mechanism of the glycosylase reaction with hOGG1 base-excision repair enzyme: concerted effect of Lys249 and Asp268 during excision of 8-oxoguanine. Šebera J; Hattori Y; Sato D; Reha D; Nencka R; Kohno T; Kojima C; Tanaka Y; Sychrovský V Nucleic Acids Res; 2017 May; 45(9):5231-5242. PubMed ID: 28334993 [TBL] [Abstract][Full Text] [Related]
12. Enforced presentation of an extrahelical guanine to the lesion recognition pocket of human 8-oxoguanine glycosylase, hOGG1. Crenshaw CM; Nam K; Oo K; Kutchukian PS; Bowman BR; Karplus M; Verdine GL J Biol Chem; 2012 Jul; 287(30):24916-28. PubMed ID: 22511791 [TBL] [Abstract][Full Text] [Related]
13. High resolution characterization of formamidopyrimidine-DNA glycosylase interaction with its substrate by chemical cross-linking and mass spectrometry using substrate analogs. Rogacheva M; Ishchenko A; Saparbaev M; Kuznetsova S; Ogryzko V J Biol Chem; 2006 Oct; 281(43):32353-65. PubMed ID: 16928690 [TBL] [Abstract][Full Text] [Related]
14. Catalytically Competent Conformation of the Active Site of Human 8-Oxoguanine-DNA Glycosylase. Popov AV; Yudkina AV; Vorobjev YN; Zharkov DO Biochemistry (Mosc); 2020 Feb; 85(2):192-204. PubMed ID: 32093595 [TBL] [Abstract][Full Text] [Related]
15. Structural characterization of human 8-oxoguanine DNA glycosylase variants bearing active site mutations. Radom CT; Banerjee A; Verdine GL J Biol Chem; 2007 Mar; 282(12):9182-94. PubMed ID: 17114185 [TBL] [Abstract][Full Text] [Related]
16. Product inhibition and magnesium modulate the dual reaction mode of hOgg1. Morland I; Luna L; Gustad E; Seeberg E; Bjørås M DNA Repair (Amst); 2005 Mar; 4(3):381-7. PubMed ID: 15661661 [TBL] [Abstract][Full Text] [Related]
17. Thermodynamics of the DNA damage repair steps of human 8-oxoguanine DNA glycosylase. Kuznetsov NA; Kuznetsova AA; Vorobjev YN; Krasnoperov LN; Fedorova OS PLoS One; 2014; 9(6):e98495. PubMed ID: 24911585 [TBL] [Abstract][Full Text] [Related]
18. DNA lesion recognition by the bacterial repair enzyme MutM. Fromme JC; Verdine GL J Biol Chem; 2003 Dec; 278(51):51543-8. PubMed ID: 14525999 [TBL] [Abstract][Full Text] [Related]
19. Two sequential phosphates 3' adjacent to the 8-oxoguanosine are crucial for lesion excision by E. coli Fpg protein and human 8-oxoguanine-DNA glycosylase. Rogacheva MV; Saparbaev MK; Afanasov IM; Kuznetsova SA Biochimie; 2005 Dec; 87(12):1079-88. PubMed ID: 15979229 [TBL] [Abstract][Full Text] [Related]
20. Pyramidalization of the glycosidic nitrogen provides the way for efficient cleavage of the N-glycosidic bond of 8-OxoG with the hOGG1 DNA repair protein. Šebera J; Trantírek L; Tanaka Y; Sychrovský V J Phys Chem B; 2012 Oct; 116(41):12535-44. PubMed ID: 22989268 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]