These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 36269116)

  • 41. Single Nanoporous MgHPO
    Huang X; Li N; Wang J; Liu D; Xu J; Zhang Z; Zhong M
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2252-2258. PubMed ID: 31886998
    [TBL] [Abstract][Full Text] [Related]  

  • 42. BaSO
    Wu T; Zou Q; Li Z; Chen B; Gao W; Sun Q; Zhao S
    Langmuir; 2024 Jan; 40(1):638-646. PubMed ID: 38103026
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Spectrally Selective Nanoparticle Mixture Coating for Passive Daytime Radiative Cooling.
    Chae D; Lim H; So S; Son S; Ju S; Kim W; Rho J; Lee H
    ACS Appl Mater Interfaces; 2021 May; 13(18):21119-21126. PubMed ID: 33926186
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Controllable-morphology polymer blend photonic metafoam for radiative cooling.
    Wang Y; Wang T; Liang J; Wu J; Yang M; Pan Y; Hou C; Liu C; Shen C; Tao G; Liu X
    Mater Horiz; 2023 Oct; 10(11):5060-5070. PubMed ID: 37661692
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ultra-broadband all-dielectric metamaterial thermal emitter for passive radiative cooling.
    Kong A; Cai B; Shi P; Yuan XC
    Opt Express; 2019 Oct; 27(21):30102-30115. PubMed ID: 31684263
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Fabrication of Yttrium Oxide Hollow Films for Efficient Passive Radiative Cooling.
    Jeon H; Sung S; Yu J; Kim H; Kim YS; Yoo Y
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068117
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rational Design and Fine Fabrication of Passive Daytime Radiative Cooling Textiles Integrate Antibacterial, UV-Shielding, and Self-Cleaning Characteristics.
    Li BB; Zhang GL; Xue QK; Luo P; Zhao X; Xue YB; Wu B; Han B; Liu HJ; Wang ZS; Zheng M; Zhuo MP
    ACS Appl Mater Interfaces; 2024 Oct; 16(39):52633-52644. PubMed ID: 39300615
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bioinspired Switchable Passive Daytime Radiative Cooling Coatings.
    Wang T; Xiao Y; King JL; Kats MA; Stebe KJ; Lee D
    ACS Appl Mater Interfaces; 2023 Oct; 15(41):48716-48724. PubMed ID: 37812501
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Particle-Solid Transition Architecture for Efficient Passive Building Cooling.
    Yan X; Yang M; Duan W; Cui H
    ACS Nano; 2024 Oct; 18(40):27752-27763. PubMed ID: 39321467
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Highly Solar-Reflective Structures for Daytime Radiative Cooling under High Humidity.
    Zhong H; Zhang P; Li Y; Yang X; Zhao Y; Wang Z
    ACS Appl Mater Interfaces; 2020 Nov; 12(46):51409-51417. PubMed ID: 33147941
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Novel Multifunctional Photonic Film for Colored Passive Daytime Radiative Cooling and Energy Harvesting.
    Wu Y; Wang S; Zhang R; Yu T; Xu M; Li X; Pu M; Ma X; Guo Y; Su Y; Tai H; Luo X
    Small; 2024 Jun; 20(26):e2308661. PubMed ID: 38258607
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Multilayer Emitter Close to Ideal Solar Reflectance for Efficient Daytime Radiative Cooling.
    Zhu Y; Wang D; Fang C; He P; Ye YH
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31323830
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hierarchical Superhydrophobic Poly(vinylidene fluoride-
    Meng X; Chen Z; Qian C; Song Z; Wang L; Li Q; Chen X
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2256-2266. PubMed ID: 36541618
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phase-change materials reinforced intelligent paint for efficient daytime radiative cooling.
    Qin M; Xiong F; Aftab W; Shi J; Han H; Zou R
    iScience; 2022 Jul; 25(7):104584. PubMed ID: 35784790
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surface Pattern over a Thick Silica Film to Realize Passive Radiative Cooling.
    Liu Y; Li J; Liu C
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34070026
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling.
    Zeng S; Pian S; Su M; Wang Z; Wu M; Liu X; Chen M; Xiang Y; Wu J; Zhang M; Cen Q; Tang Y; Zhou X; Huang Z; Wang R; Tunuhe A; Sun X; Xia Z; Tian M; Chen M; Ma X; Yang L; Zhou J; Zhou H; Yang Q; Li X; Ma Y; Tao G
    Science; 2021 Aug; 373(6555):692-696. PubMed ID: 34353954
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Flexible Radiative Cooling Textiles Based on Composite Nanoporous Fibers for Personal Thermal Management.
    Li M; Yan Z; Fan D
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):17848-17857. PubMed ID: 36977290
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assessing energy saving potential of wavelength-dependent passive daytime radiative cooler implemented with EnergyPlus by a roof model.
    Yang Y; Zhang G; Rong L
    Heliyon; 2024 Mar; 10(5):e26428. PubMed ID: 38463899
    [TBL] [Abstract][Full Text] [Related]  

  • 59. High-Durable, Radiative-Cooling, and Heat-Insulating Flexible Films Enabled by a Bioinspired Dictyophora-Like Structure.
    Zhou J; Ding C; Zhang X; Li D; Yang D; You B; Wu L
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 38032275
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Daytime radiative cooling multilayer films designed by a machine learning method and genetic algorithm.
    Li S; An M; Zheng Z; Gou Y; Lian W; Yu W; Zhang P
    Appl Opt; 2023 Jun; 62(16):4359-4369. PubMed ID: 37706929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.