BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36269119)

  • 1. Histidine-Triggered GO Hybrid Hydrogels for Microfluidic 3D Printing.
    Ding X; Yu Y; Shang L; Zhao Y
    ACS Nano; 2022 Nov; 16(11):19533-19542. PubMed ID: 36269119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile Fabrication of Hollow Hydrogel Microfiber via 3D Printing-Assisted Microfluidics and Its Application as a Biomimetic Blood Capillary.
    Lan D; Shang Y; Su H; Liang M; Liu Y; Li H; Feng Q; Cao X; Dong H
    ACS Biomater Sci Eng; 2021 Oct; 7(10):4971-4981. PubMed ID: 34503336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photocuring 3D Printing of Hydrogels: Techniques, Materials, and Applications in Tissue Engineering and Flexible Devices.
    Lu G; Tang R; Nie J; Zhu X
    Macromol Rapid Commun; 2024 Apr; 45(7):e2300661. PubMed ID: 38271638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering.
    Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chondroinductive Alginate-Based Hydrogels Having Graphene Oxide for 3D Printed Scaffold Fabrication.
    Olate-Moya F; Arens L; Wilhelm M; Mateos-Timoneda MA; Engel E; Palza H
    ACS Appl Mater Interfaces; 2020 Jan; 12(4):4343-4357. PubMed ID: 31909967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering.
    Kumar A; I Matari IA; Han SS
    Biofabrication; 2020 Mar; 12(2):025029. PubMed ID: 32029691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printing of Self-Assembling Nanofibrous Multidomain Peptide Hydrogels.
    Farsheed AC; Thomas AJ; Pogostin BH; Hartgerink JD
    Adv Mater; 2023 Mar; 35(11):e2210378. PubMed ID: 36604310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three-Dimensional-Printable Thermo/Photo-Cross-Linked Methacrylated Chitosan-Gelatin Hydrogel Composites for Tissue Engineering.
    Osi AR; Zhang H; Chen J; Zhou Y; Wang R; Fu J; Müller-Buschbaum P; Zhong Q
    ACS Appl Mater Interfaces; 2021 May; 13(19):22902-22913. PubMed ID: 33960765
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-Fiber Embedded Hydrogel 3D Printing for Structural Reinforcement.
    Sun W; Tashman JW; Shiwarski DJ; Feinberg AW; Webster-Wood VA
    ACS Biomater Sci Eng; 2022 Jan; 8(1):303-313. PubMed ID: 34860495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Bioprinting of Cell-Laden Constructs Using Polysaccharide-Based Self-Healing Hydrogels.
    Kim SW; Kim DY; Roh HH; Kim HS; Lee JW; Lee KY
    Biomacromolecules; 2019 May; 20(5):1860-1866. PubMed ID: 30912929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoclay-Based Self-Supporting Responsive Nanocomposite Hydrogels for Printing Applications.
    Jin Y; Shen Y; Yin J; Qian J; Huang Y
    ACS Appl Mater Interfaces; 2018 Mar; 10(12):10461-10470. PubMed ID: 29493213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors - A review.
    Distler T; Boccaccini AR
    Acta Biomater; 2020 Jan; 101():1-13. PubMed ID: 31476385
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic Printing of Three-Dimensional Graphene Electroactive Microfibrous Scaffolds.
    Qing H; Ji Y; Li W; Zhao G; Yang Q; Zhang X; Luo Z; Lu TJ; Jin G; Xu F
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2049-2058. PubMed ID: 31799832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels.
    Zhao D; Liu Y; Liu B; Chen Z; Nian G; Qu S; Yang W
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13714-13723. PubMed ID: 33720679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printing of self-standing and vascular supportive multimaterial hydrogel structures for organ engineering.
    Liu S; Hu Q; Shen Z; Krishnan S; Zhang H; Ramalingam M
    Biotechnol Bioeng; 2022 Jan; 119(1):118-133. PubMed ID: 34617587
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ferric ion crosslinking-based 3D printing of a graphene oxide hydrogel and its evaluation as a bio-scaffold in tissue engineering.
    Lu R; Zhang W; He Y; Zhang S; Fu Q; Pang Y; Sun W
    Biotechnol Bioeng; 2021 Feb; 118(2):1006-1012. PubMed ID: 33022744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silk fibroin reactive inks for 3D printing crypt-like structures.
    Heichel DL; Tumbic JA; Boch ME; Ma AWK; Burke KA
    Biomed Mater; 2020 Sep; 15(5):055037. PubMed ID: 32924975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensional printing of hyaluronate-based self-healing ferrogel with enhanced stretchability.
    Mun CU; Kim HS; Kong M; Lee KY
    Colloids Surf B Biointerfaces; 2023 Jan; 221():113004. PubMed ID: 36370646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composite Inks for Extrusion Printing of Biological and Biomedical Constructs.
    Ravanbakhsh H; Bao G; Luo Z; Mongeau LG; Zhang YS
    ACS Biomater Sci Eng; 2021 Sep; 7(9):4009-4026. PubMed ID: 34510905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional Printing and Injectable Conductive Hydrogels for Tissue Engineering Application.
    Jiang L; Wang Y; Liu Z; Ma C; Yan H; Xu N; Gang F; Wang X; Zhao L; Sun X
    Tissue Eng Part B Rev; 2019 Oct; 25(5):398-411. PubMed ID: 31115274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.