BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36269119)

  • 21. Inkjet-Spray Hybrid Printing for 3D Freeform Fabrication of Multilayered Hydrogel Structures.
    Yoon S; Park JA; Lee HR; Yoon WH; Hwang DS; Jung S
    Adv Healthc Mater; 2018 Jul; 7(14):e1800050. PubMed ID: 29708307
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Slide-Ring Structure-Based Double-Network Hydrogel with Enhanced Stretchability and Toughness for 3D-Bio-Printing and Its Potential Application as Artificial Small-Diameter Blood Vessels.
    Liu Y; Zhang Y; An Z; Zhao H; Zhang L; Cao Y; Mansoorianfar M; Liu X; Pei R
    ACS Appl Bio Mater; 2021 Dec; 4(12):8597-8606. PubMed ID: 35005952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Scalable and Automated Fabrication of Conductive Tough-Hydrogel Microfibers with Ultrastretchability, 3D Printability, and Stress Sensitivity.
    Wei S; Qu G; Luo G; Huang Y; Zhang H; Zhou X; Wang L; Liu Z; Kong T
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11204-11212. PubMed ID: 29504395
    [TBL] [Abstract][Full Text] [Related]  

  • 24. 3D Printing of Robust High-Performance Conducting Polymer Hydrogel-Based Electrical Bioadhesive Interface for Soft Bioelectronics.
    Yu J; Wan R; Tian F; Cao J; Wang W; Liu Q; Yang H; Liu J; Liu X; Lin T; Xu J; Lu B
    Small; 2024 May; 20(19):e2308778. PubMed ID: 38063822
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enhanced Electroactivity, Mechanical Properties, and Printability through the Addition of Graphene Oxide to Photo-Cross-linkable Gelatin Methacryloyl Hydrogel.
    Xavier Mendes A; Moraes Silva S; O'Connell CD; Duchi S; Quigley AF; Kapsa RMI; Moulton SE
    ACS Biomater Sci Eng; 2021 Jun; 7(6):2279-2295. PubMed ID: 33956434
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic Hydrogels and Polymers as Inks for Three-Dimensional Printing.
    Heidarian P; Kouzani AZ; Kaynak A; Paulino M; Nasri-Nasrabadi B
    ACS Biomater Sci Eng; 2019 Jun; 5(6):2688-2707. PubMed ID: 33405602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Chitosan hydrogels in 3D printing for biomedical applications.
    Rajabi M; McConnell M; Cabral J; Ali MA
    Carbohydr Polym; 2021 May; 260():117768. PubMed ID: 33712126
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [One-step generation of droplet-filled hydrogel microfibers for 3D cell culture using an all-aqueous microfluidic system].
    Zhao MQ; Liu HT; Zhang X; Gan ZQ; Qin JH
    Se Pu; 2023 Sep; 41(9):742-751. PubMed ID: 37712538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D Printable Dynamic Hydrogel: As Simple as it Gets!
    Díaz A; Herrada-Manchón H; Nunes J; Lopez A; Díaz N; Grande HJ; Loinaz I; Fernández MA; Dupin D
    Macromol Rapid Commun; 2022 Nov; 43(21):e2200449. PubMed ID: 35904533
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A rheological approach to assess the printability of thermosensitive chitosan-based biomaterial inks.
    Rahimnejad M; Labonté-Dupuis T; Demarquette NR; Lerouge S
    Biomed Mater; 2020 Nov; 16(1):015003. PubMed ID: 33245047
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces.
    Zhou T; Yuk H; Hu F; Wu J; Tian F; Roh H; Shen Z; Gu G; Xu J; Lu B; Zhao X
    Nat Mater; 2023 Jul; 22(7):895-902. PubMed ID: 37322141
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rheological behavior and particle alignment of cellulose nanocrystal and its composite hydrogels during 3D printing.
    Ma T; Lv L; Ouyang C; Hu X; Liao X; Song Y; Hu X
    Carbohydr Polym; 2021 Feb; 253():117217. PubMed ID: 33278981
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 3D Printable Soy/Silk Hybrid Hydrogels for Tissue Engineering Applications.
    Dorishetty P; Balu R; Gelmi A; Mata JP; Dutta NK; Choudhury NR
    Biomacromolecules; 2021 Sep; 22(9):3668-3678. PubMed ID: 34460237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Long-term stability, high strength, and 3D printable alginate hydrogel for cartilage tissue engineering application.
    Chu Y; Huang L; Hao W; Zhao T; Zhao H; Yang W; Xie X; Qian L; Chen Y; Dai J
    Biomed Mater; 2021 Sep; 16(6):. PubMed ID: 34507313
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Controlled Fabrication of Bioactive Microfibers for Creating Tissue Constructs Using Microfluidic Techniques.
    Cheng Y; Yu Y; Fu F; Wang J; Shang L; Gu Z; Zhao Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1080-6. PubMed ID: 26741731
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protocols of 3D Bioprinting of Gelatin Methacryloyl Hydrogel Based Bioinks.
    Xie M; Yu K; Sun Y; Shao L; Nie J; Gao Q; Qiu J; Fu J; Chen Z; He Y
    J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904016
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D Printing Unique Nanoclay-Incorporated Double-Network Hydrogels for Construction of Complex Tissue Engineering Scaffolds.
    Guo Z; Dong L; Xia J; Mi S; Sun W
    Adv Healthc Mater; 2021 Jun; 10(11):e2100036. PubMed ID: 33949152
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multi and mixed 3D-printing of graphene-hydroxyapatite hybrid materials for complex tissue engineering.
    Jakus AE; Shah RN
    J Biomed Mater Res A; 2017 Jan; 105(1):274-283. PubMed ID: 26860782
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D double-reinforced graphene oxide - nanocellulose biomaterial inks for tissue engineered constructs.
    Cernencu AI; Vlasceanu GM; Serafim A; Pircalabioru G; Ionita M
    RSC Adv; 2023 Aug; 13(34):24053-24063. PubMed ID: 37577089
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications.
    Janarthanan G; Tran HN; Cha E; Lee C; Das D; Noh I
    Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111008. PubMed ID: 32487412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.