These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 36269119)

  • 61. 3D Printing of dynamic tissue scaffold by combining self-healing hydrogel and self-healing ferrogel.
    Choi Y; Kim C; Kim HS; Moon C; Lee KY
    Colloids Surf B Biointerfaces; 2021 Dec; 208():112108. PubMed ID: 34543778
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Jammed Microgel-Based Inks for 3D Printing of Complex Structures Transformable via pH/Temperature Variations.
    Moon D; Lee MG; Sun JY; Song KH; Doh J
    Macromol Rapid Commun; 2022 Oct; 43(19):e2200271. PubMed ID: 35686322
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Recent advances in 3D printing properties of natural food gels: Application of innovative food additives.
    Sharma R; Chandra Nath P; Kumar Hazarika T; Ojha A; Kumar Nayak P; Sridhar K
    Food Chem; 2024 Jan; 432():137196. PubMed ID: 37659329
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Sequential assembly of 3D perfusable microfluidic hydrogels.
    He J; Zhu L; Liu Y; Li D; Jin Z
    J Mater Sci Mater Med; 2014 Nov; 25(11):2491-500. PubMed ID: 25027302
    [TBL] [Abstract][Full Text] [Related]  

  • 65. High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticles.
    Pawar AA; Saada G; Cooperstein I; Larush L; Jackman JA; Tabaei SR; Cho NJ; Magdassi S
    Sci Adv; 2016 Apr; 2(4):e1501381. PubMed ID: 27051877
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Ultrastretchable E-Skin Based on Conductive Hydrogel Microfibers for Wearable Sensors.
    Wang J; Qi Y; Gui Y; Wang C; Wu Y; Yao J; Wang J
    Small; 2024 Mar; 20(9):e2305951. PubMed ID: 37817356
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks.
    Zhang R; Larsen NB
    Lab Chip; 2017 Dec; 17(24):4273-4282. PubMed ID: 29116271
    [TBL] [Abstract][Full Text] [Related]  

  • 68. 3D printing of tough hydrogels based on metal coordination with a two-step crosslinking strategy.
    Guo G; Wu Y; Du C; Yin J; Wu ZL; Zheng Q; Qian J
    J Mater Chem B; 2022 Mar; 10(13):2126-2134. PubMed ID: 35191448
    [TBL] [Abstract][Full Text] [Related]  

  • 69. 3D bioprinting of complex channels within cell-laden hydrogels.
    Ji S; Almeida E; Guvendiren M
    Acta Biomater; 2019 Sep; 95():214-224. PubMed ID: 30831327
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Preparation of 3D Printed Chitosan/Polyvinyl Alcohol Double Network Hydrogel Scaffolds.
    Liu F; Li W; Liu H; Yuan T; Yang Y; Zhou W; Hu Y; Yang Z
    Macromol Biosci; 2021 Apr; 21(4):e2000398. PubMed ID: 33624936
    [TBL] [Abstract][Full Text] [Related]  

  • 71. 3D reactive inkjet printing of poly-ɛ-lysine/gellan gum hydrogels for potential corneal constructs.
    Duffy GL; Liang H; Williams RL; Wellings DA; Black K
    Mater Sci Eng C Mater Biol Appl; 2021 Dec; 131():112476. PubMed ID: 34857261
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Three-Dimensional Printable Conductive Semi-Interpenetrating Polymer Network Hydrogel for Neural Tissue Applications.
    Rinoldi C; Lanzi M; Fiorelli R; Nakielski P; Zembrzycki K; Kowalewski T; Urbanek O; Grippo V; Jezierska-Woźniak K; Maksymowicz W; Camposeo A; Bilewicz R; Pisignano D; Sanai N; Pierini F
    Biomacromolecules; 2021 Jul; 22(7):3084-3098. PubMed ID: 34151565
    [TBL] [Abstract][Full Text] [Related]  

  • 73. 3D printing of a tough double-network hydrogel and its use as a scaffold to construct a tissue-like hydrogel composite.
    Du C; Hu J; Wu X; Shi H; Yu HC; Qian J; Yin J; Gao C; Wu ZL; Zheng Q
    J Mater Chem B; 2022 Jan; 10(3):468-476. PubMed ID: 34982091
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Loose Pre-Cross-Linking Mediating Cellulose Self-Assembly for 3D Printing Strong and Tough Biomimetic Scaffolds.
    Guo J; Li Q; Zhang R; Li B; Zhang J; Yao L; Lin Z; Zhang L; Cao X; Duan B
    Biomacromolecules; 2022 Mar; 23(3):877-888. PubMed ID: 35142493
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Rheology and direct write printing of chitosan - graphene oxide nanocomposite hydrogels for differentiation of neuroblastoma cells.
    Marapureddy SG; Hivare P; Sharma A; Chakraborty J; Ghosh S; Gupta S; Thareja P
    Carbohydr Polym; 2021 Oct; 269():118254. PubMed ID: 34294291
    [TBL] [Abstract][Full Text] [Related]  

  • 77. 3D printing of heterogeneous microfibers with multi-hollow structure via microfluidic spinning.
    Li W; Yao K; Tian L; Xue C; Zhang X; Gao X
    J Tissue Eng Regen Med; 2022 Oct; 16(10):913-922. PubMed ID: 35802061
    [TBL] [Abstract][Full Text] [Related]  

  • 78. 3D Printing of In Vitro Hydrogel Microcarriers by Alternating Viscous-Inertial Force Jetting.
    Liu T; Shao Y; Wang Z; Chen Y; Pang Y; Weng D; Sun W
    J Vis Exp; 2021 Apr; (170):. PubMed ID: 33970133
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Microfluidic-enhanced 3D bioprinting of aligned myoblast-laden hydrogels leads to functionally organized myofibers in vitro and in vivo.
    Costantini M; Testa S; Mozetic P; Barbetta A; Fuoco C; Fornetti E; Tamiro F; Bernardini S; Jaroszewicz J; Święszkowski W; Trombetta M; Castagnoli L; Seliktar D; Garstecki P; Cesareni G; Cannata S; Rainer A; Gargioli C
    Biomaterials; 2017 Jul; 131():98-110. PubMed ID: 28388499
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Three-Dimensional Printable Gelatin Hydrogels Incorporating Graphene Oxide to Enable Spontaneous Myogenic Differentiation.
    Kang MS; Kang JI; Le Thi P; Park KM; Hong SW; Choi YS; Han DW; Park KD
    ACS Macro Lett; 2021 Apr; 10(4):426-432. PubMed ID: 35549236
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.