These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36269494)

  • 1. Effects of the presence of phosphate buffer solution on removal efficiency of Pb and Zn in soil by solid phase microbial fuel cells.
    Cao M; Yin J; Song T; Xie J
    Biotechnol Lett; 2022 Dec; 44(12):1495-1505. PubMed ID: 36269494
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soil Microbial Fuel Cell Based Self-Powered Cathodic Biosensor for Sensitive Detection of Heavy Metals.
    Wang SH; Wang JW; Zhao LT; Abbas SZ; Yang Z; Yong YC
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial fuel cell driving electrokinetic remediation of toxic metal contaminated soils.
    Habibul N; Hu Y; Sheng GP
    J Hazard Mater; 2016 Nov; 318():9-14. PubMed ID: 27388419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ degradation of organic pollutants by novel solar cell equipped soil microbial fuel cell.
    Xie W; Ren G; Zhou J; Ke Z; Ren K; Zhao X; Wang Y
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):30210-30220. PubMed ID: 36422776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitigation effects of the microbial fuel cells on heavy metal accumulation in rice (Oryza sativa L.).
    Gustave W; Yuan ZF; Li X; Ren YX; Feng WJ; Shen H; Chen Z
    Environ Pollut; 2020 May; 260():113989. PubMed ID: 31991356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous enhancement of heavy metal removal and electricity generation in soil microbial fuel cell.
    Zhang J; Cao X; Wang H; Long X; Li X
    Ecotoxicol Environ Saf; 2020 Apr; 192():110314. PubMed ID: 32061983
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms and challenges of microbial fuel cells for soil heavy metal(loid)s remediation.
    Gustave W; Yuan Z; Liu F; Chen Z
    Sci Total Environ; 2021 Feb; 756():143865. PubMed ID: 33293085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Influence of buffer solutions on the performance of microbial fuel cell electricity generation].
    Qiang L; Yuan LJ; Ding Q
    Huan Jing Ke Xue; 2011 May; 32(5):1524-8. PubMed ID: 21780615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced bioremediation of heavy metals and bioelectricity generation in a macrophyte-integrated cathode sediment microbial fuel cell (mSMFC).
    Kabutey FT; Antwi P; Ding J; Zhao QL; Quashie FK
    Environ Sci Pollut Res Int; 2019 Sep; 26(26):26829-26843. PubMed ID: 31300989
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potential value of phosphate compounds in enhancing immobilization and reducing bioavailability of mixed heavy metal contaminants in shooting range soil.
    Seshadri B; Bolan NS; Choppala G; Kunhikrishnan A; Sanderson P; Wang H; Currie LD; Tsang DCW; Ok YS; Kim G
    Chemosphere; 2017 Oct; 184():197-206. PubMed ID: 28595145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of anode materials on the performance and anode microbial community of soil microbial fuel cell.
    Yu B; Feng L; He Y; Yang L; Xun Y
    J Hazard Mater; 2021 Jan; 401():123394. PubMed ID: 32659585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of microbial fuel cell technology to the remediation of compound heavy metal contamination in soil.
    Zhang J; Jiao W; Huang S; Wang H; Cao X; Li X; Sakamaki T
    J Environ Manage; 2022 Oct; 320():115670. PubMed ID: 35921747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrokinetic remediation of Zn and Ni-contaminated soil.
    Kim DH; Ryu BG; Park SW; Seo CI; Baek K
    J Hazard Mater; 2009 Jun; 165(1-3):501-5. PubMed ID: 19010593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural hematite as low-cost auxiliary material for improving soil remediation by in-situ microbial community.
    Zhang C; Wang Q; Qin R; Li Z; Wang Y; Ke Z; Ren G
    Environ Sci Pollut Res Int; 2023 Jul; 30(35):84141-84151. PubMed ID: 37355514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remediation of PAH polluted soils using a soil microbial fuel cell: Influence of electrode interval and role of microbial community.
    Yu B; Tian J; Feng L
    J Hazard Mater; 2017 Aug; 336():110-118. PubMed ID: 28494298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Soil organic matter amount determines the behavior of iron and arsenic in paddy soil with microbial fuel cells.
    Gustave W; Yuan ZF; Sekar R; Ren YX; Liu JY; Zhang J; Chen Z
    Chemosphere; 2019 Dec; 237():124459. PubMed ID: 31377597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methane emission reduction oriented extracellular electron transfer and bioremediation of sediment microbial fuel cell: A review.
    Xu C; Sun S; Li Y; Gao Y; Zhang W; Tian L; Li T; Du Q; Cai J; Zhou L
    Sci Total Environ; 2023 May; 874():162508. PubMed ID: 36863582
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in soil microbial fuel cells for soil contaminants remediation.
    Abbas SZ; Rafatullah M
    Chemosphere; 2021 Jun; 272():129691. PubMed ID: 33573807
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in soil microbial fuel cells based self-powered biosensor.
    Abbas SZ; Wang JY; Wang H; Wang JX; Wang YT; Yong YC
    Chemosphere; 2022 Sep; 303(Pt 1):135036. PubMed ID: 35609665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.