BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 36269581)

  • 1. Waste tire pyrolysis and desulfurization of tire pyrolytic oil (TPO) - A review.
    Mello M; Rutto H; Seodigeng T
    J Air Waste Manag Assoc; 2023 Mar; 73(3):159-177. PubMed ID: 36269581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Desulfurization and upgrade of pyrolytic oil and gas during waste tires pyrolysis: The role of metal oxides.
    Jiang H; Zhang J; Shao J; Fan T; Li J; Agblevor F; Song H; Yu J; Yang H; Chen H
    Waste Manag; 2024 Jun; 182():44-54. PubMed ID: 38636125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of carbon black from waste tire in continuous commercial rotary kiln pyrolysis reactor.
    Xu J; Yu J; He W; Huang J; Xu J; Li G
    Sci Total Environ; 2021 Jun; 772():145507. PubMed ID: 33770869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyrolytic Conversion of Plastic Waste to Value-Added Products and Fuels: A Review.
    Papari S; Bamdad H; Berruti F
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34065677
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quality protocol and procedure development to define end-of-waste criteria for tire pyrolysis oil in the framework of circular economy strategy.
    Antoniou NA; Zorpas AA
    Waste Manag; 2019 Jul; 95():161-170. PubMed ID: 31351601
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrolysis reaction models of waste tires: Application of Master-Plots method for energy conversion via devolatilization.
    Irmak Aslan D; Parthasarathy P; Goldfarb JL; Ceylan S
    Waste Manag; 2017 Oct; 68():405-411. PubMed ID: 28623023
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid fuel from waste tires: novel refining, advanced characterization and utilization in engines with ethyl levulinate as an additive.
    Mohan A; Dutta S; Balusamy S; Madav V
    RSC Adv; 2021 Mar; 11(17):9807-9826. PubMed ID: 35423526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyrolysis and Oxidation of Waste Tire Oil: Analysis of Evolved Gases.
    Abdul Jameel AG; Alquaity ABS; Islam KO; Pasha AA; Khan S; Nemitallah MA; Ahmed U
    ACS Omega; 2022 Jun; 7(25):21574-21582. PubMed ID: 35785323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative analysis of the characteristics of carbonaceous material obtained via single-staged steam pyrolysis of waste tires.
    Larionov KB; Slyusarskiy KV; Ivanov AA; Mishakov IV; Pak AY; Jankovsky SA; Stoyanovskii VO; Vedyagin AA; Gubin VE
    J Air Waste Manag Assoc; 2022 Feb; 72(2):161-175. PubMed ID: 34846272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abatement of hazardous materials and biomass waste via pyrolysis and co-pyrolysis for environmental sustainability and circular economy.
    Chew KW; Chia SR; Chia WY; Cheah WY; Munawaroh HSH; Ong WJ
    Environ Pollut; 2021 Jun; 278():116836. PubMed ID: 33689952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of the pyrolytic products and the pollutant emissions at different operating stages from a pilot waste tire pyrolysis furnace.
    Fu J; Ye W; Ji L; Yin Y; Xu X; Huang Q; Li X; Jiao W; Zhan M
    Waste Manag; 2024 Feb; 174():585-596. PubMed ID: 38142564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dataset from analytical pyrolysis assays for converting waste tires into valuable chemicals in the presence of noble-metal catalysts.
    Azócar BS; Vargas PO; Campos C; Medina F; Arteaga-Pérez LE
    Data Brief; 2022 Feb; 40():107745. PubMed ID: 35005140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation and improvement of the desulfurization performance of molten carbonates under the influence of typical pyrolysis gases.
    Xu S; Yang F; Hu H; Gao L; Chen T; Cao C; Yao H
    Waste Manag; 2021 Apr; 124():46-53. PubMed ID: 33601177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of high heating rates on products distribution and sulfur transformation during the pyrolysis of waste tires.
    Wang H; Hu H; Yang Y; Liu H; Tang H; Xu S; Li A; Yao H
    Waste Manag; 2020 Dec; 118():9-17. PubMed ID: 32871409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential Valorization of Waste Tires as Activated Carbon-Based Adsorbent for Organic Contaminants Removal.
    Frikha K; Limousy L; Pons Claret J; Vaulot C; Pérez KF; Garcia BC; Bennici S
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35161040
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Upgrading pyrolytic residue from waste tires to commercial carbon black.
    Zhang X; Li H; Cao Q; Jin L; Wang F
    Waste Manag Res; 2018 May; 36(5):436-444. PubMed ID: 29589516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advances on waste tires: bibliometric analysis, processes, and waste management approaches.
    Magagula SI; Lebelo K; Motloung TM; Mokhena TC; Mochane MJ
    Environ Sci Pollut Res Int; 2023 Dec; 30(56):118213-118245. PubMed ID: 37936049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adjusting effects of pyrolytic volatiles interaction in char to upgrade oil by swelling waste nylon-tire.
    Huang R; Ren Q; Zhang J; He L; Su S; Wang Y; Jiang L; Xu J; Hu S; Xiang J
    Waste Manag; 2023 Sep; 169():374-381. PubMed ID: 37527617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BTEX recovery from waste rubbers by catalytic pyrolysis over Zn loaded tire derived char.
    Pan Y; Sima J; Wang X; Zhou Y; Huang Q
    Waste Manag; 2021 Jul; 131():214-225. PubMed ID: 34167041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic pyrolysis of tire waste: Impacts of biochar catalyst on product evolution.
    Chao L; Zhang C; Zhang L; Gholizadeh M; Hu X
    Waste Manag; 2020 Oct; 116():9-21. PubMed ID: 32781409
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.