These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36269857)

  • 1. Obtaining Electronic Properties of Molecules through Combining Density Functional Tight Binding with Machine Learning.
    Fan G; McSloy A; Aradi B; Yam CY; Frauenheim T
    J Phys Chem Lett; 2022 Nov; 13(43):10132-10139. PubMed ID: 36269857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Density Functional Tight Binding Layer for Deep Learning of Chemical Hamiltonians.
    Li H; Collins C; Tanha M; Gordon GJ; Yaron DJ
    J Chem Theory Comput; 2018 Nov; 14(11):5764-5776. PubMed ID: 30351008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine Learning Enhanced DFTB Method for Periodic Systems: Learning from Electronic Density of States.
    Sun W; Fan G; van der Heide T; McSloy A; Frauenheim T; Aradi B
    J Chem Theory Comput; 2023 Jul; 19(13):3877-3888. PubMed ID: 37350192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TBMaLT, a flexible toolkit for combining tight-binding and machine learning.
    McSloy A; Fan G; Sun W; Hölzer C; Friede M; Ehlert S; Schütte NE; Grimme S; Frauenheim T; Aradi B
    J Chem Phys; 2023 Jan; 158(3):034801. PubMed ID: 36681630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Optimization of Density Functional Tight Binding Models: Application to Molecules Containing Carbon, Hydrogen, Nitrogen, and Oxygen.
    Krishnapriyan A; Yang P; Niklasson AMN; Cawkwell MJ
    J Chem Theory Comput; 2017 Dec; 13(12):6191-6200. PubMed ID: 29039935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved electronic properties from third-order SCC-DFTB with cost efficient post-SCF extensions.
    Kaminski S; Gaus M; Elstner M
    J Phys Chem A; 2012 Dec; 116(48):11927-37. PubMed ID: 23167841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A non-self-consistent tight-binding electronic structure potential in a polarized double-ζ basis set for all spd-block elements up to Z = 86.
    Grimme S; Müller M; Hansen A
    J Chem Phys; 2023 Mar; 158(12):124111. PubMed ID: 37003744
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Obtaining Robust Density Functional Tight-Binding Parameters for Solids across the Periodic Table.
    Cui M; Reuter K; Margraf JT
    J Chem Theory Comput; 2024 Jun; 20(12):5276-5290. PubMed ID: 38865478
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Davis Computational Spectroscopy Workflow-From Structure to Spectra.
    Cavalcante LSR; Daemen LL; Goldman N; Moulé AJ
    J Chem Inf Model; 2021 Sep; 61(9):4486-4496. PubMed ID: 34449225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge and Exciton Transfer Simulations Using Machine-Learned Hamiltonians.
    Krämer M; Dohmen PM; Xie W; Holub D; Christensen AS; Elstner M
    J Chem Theory Comput; 2020 Jul; 16(7):4061-4070. PubMed ID: 32491856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Accurate Many-Body Repulsive Potentials for Density-Functional Tight Binding from Deep Tensor Neural Networks.
    Stöhr M; Medrano Sandonas L; Tkatchenko A
    J Phys Chem Lett; 2020 Aug; 11(16):6835-6843. PubMed ID: 32787209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning to Use the Force: Fitting Repulsive Potentials in Density-Functional Tight-Binding with Gaussian Process Regression.
    Panosetti C; Engelmann A; Nemec L; Reuter K; Margraf JT
    J Chem Theory Comput; 2020 Apr; 16(4):2181-2191. PubMed ID: 32155065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Informing geometric deep learning with electronic interactions to accelerate quantum chemistry.
    Qiao Z; Christensen AS; Welborn M; Manby FR; Anandkumar A; Miller TF
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2205221119. PubMed ID: 35901215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Green's function density functional tight-binding (gDFTB) method for molecular electronic conduction.
    Reimers JR; Solomon GC; Gagliardi A; Bilić A; Hush NS; Frauenheim T; Di Carlo A; Pecchia A
    J Phys Chem A; 2007 Jul; 111(26):5692-702. PubMed ID: 17530826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalized Density-Functional Tight-Binding Repulsive Potentials from Unsupervised Machine Learning.
    Kranz JJ; Kubillus M; Ramakrishnan R; von Lilienfeld OA; Elstner M
    J Chem Theory Comput; 2018 May; 14(5):2341-2352. PubMed ID: 29579387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Parameterization of Density Functional Tight-Binding for 5
    Liu C; Aguirre NF; Cawkwell MJ; Batista ER; Yang P
    J Chem Theory Comput; 2024 Jul; 20(14):5923-5936. PubMed ID: 38990696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-range correction for tight-binding TD-DFT.
    Humeniuk A; Mitrić R
    J Chem Phys; 2015 Oct; 143(13):134120. PubMed ID: 26450305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modern semiempirical electronic structure methods and machine learning potentials for drug discovery: Conformers, tautomers, and protonation states.
    Zeng J; Tao Y; Giese TJ; York DM
    J Chem Phys; 2023 Mar; 158(12):124110. PubMed ID: 37003741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bulk and Surface Properties of Rutile TiO2 from Self-Consistent-Charge Density Functional Tight Binding.
    Fox H; Newman KE; Schneider WF; Corcelli SA
    J Chem Theory Comput; 2010 Feb; 6(2):499-507. PubMed ID: 26617305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.