These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36269878)

  • 1. Importance of Nuclear Quantum Effects on Aqueous Electrolyte Transport under Confinement in Ti
    Ganeshan K; Khanal R; Muraleedharan MG; Hellström M; Kent PRC; Irle S; van Duin ACT
    J Chem Theory Comput; 2022 Nov; 18(11):6920-6931. PubMed ID: 36269878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and Dynamics of Aqueous Electrolytes Confined in 2D-TiO
    Ganeshan K; Shin YK; Osti NC; Sun Y; Prenger K; Naguib M; Tyagi M; Mamontov E; Jiang DE; van Duin ACT
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):58378-58389. PubMed ID: 33337151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear quantum effects on autoionization of water isotopologs studied by ab initio path integral molecular dynamics.
    Thomsen B; Shiga M
    J Chem Phys; 2021 Feb; 154(8):084117. PubMed ID: 33639728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependence of nuclear quantum effects on liquid water via artificial neural network model based on SCAN meta-GGA functional.
    Yao Y; Kanai Y
    J Chem Phys; 2020 Jul; 153(4):044114. PubMed ID: 32752675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nuclear Quantum Effects in Sodium Hydroxide Solutions from Neural Network Molecular Dynamics Simulations.
    Hellström M; Ceriotti M; Behler J
    J Phys Chem B; 2018 Nov; 122(44):10158-10171. PubMed ID: 30335385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ReaxFF reactive force field for the Y-doped BaZrO3 proton conductor with applications to diffusion rates for multigranular systems.
    van Duin AC; Merinov BV; Han SS; Dorso CO; Goddard WA
    J Phys Chem A; 2008 Nov; 112(45):11414-22. PubMed ID: 18925731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear quantum dynamics in dense hydrogen.
    Kang D; Sun H; Dai J; Chen W; Zhao Z; Hou Y; Zeng J; Yuan J
    Sci Rep; 2014 Jun; 4():5484. PubMed ID: 24968754
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The self-consistent charge density functional tight binding method applied to liquid water and the hydrated excess proton: benchmark simulations.
    Maupin CM; Aradi B; Voth GA
    J Phys Chem B; 2010 May; 114(20):6922-31. PubMed ID: 20426461
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear Quantum Effects Largely Influence Molecular Dissociation and Proton Transfer in Liquid Water under an Electric Field.
    Cassone G
    J Phys Chem Lett; 2020 Nov; 11(21):8983-8988. PubMed ID: 33035059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nuclear Quantum Effects in H(+) and OH(-) Diffusion along Confined Water Wires.
    Rossi M; Ceriotti M; Manolopoulos DE
    J Phys Chem Lett; 2016 Aug; 7(15):3001-7. PubMed ID: 27440483
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton Redox and Transport in MXene-Confined Water.
    Sun Y; Zhan C; Kent PRC; Naguib M; Gogotsi Y; Jiang DE
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):763-770. PubMed ID: 31799823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decisive role of nuclear quantum effects on surface mediated water dissociation at finite temperature.
    Litman Y; Donadio D; Ceriotti M; Rossi M
    J Chem Phys; 2018 Mar; 148(10):102320. PubMed ID: 29544260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Quest for Accurate Liquid Water Properties from First Principles.
    Ruiz Pestana L; Marsalek O; Markland TE; Head-Gordon T
    J Phys Chem Lett; 2018 Sep; 9(17):5009-5016. PubMed ID: 30118601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Routine Molecular Dynamics Simulations Including Nuclear Quantum Effects: From Force Fields to Machine Learning Potentials.
    Plé T; Mauger N; Adjoua O; Inizan TJ; Lagardère L; Huppert S; Piquemal JP
    J Chem Theory Comput; 2023 Mar; 19(5):1432-1445. PubMed ID: 36856658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the importance of anharmonicities and nuclear quantum effects in modelling the structural properties and thermal expansion of MOF-5.
    Lamaire A; Wieme J; Rogge SMJ; Waroquier M; Van Speybroeck V
    J Chem Phys; 2019 Mar; 150(9):094503. PubMed ID: 30849909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton transfer in guanine-cytosine base pair analogues studied by NMR spectroscopy and PIMD simulations.
    Pohl R; Socha O; Slavíček P; Šála M; Hodgkinson P; Dračínský M
    Faraday Discuss; 2018 Dec; 212(0):331-344. PubMed ID: 30234207
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The cobalt atom protection layers in-situ anchored titanium carbide with controllable interlayer spacing towards stable and fast lithium ions storage.
    Liu MC; Zhang YS; Zhang BM; Kong LB; Hu YX
    J Colloid Interface Sci; 2022 Apr; 612():267-276. PubMed ID: 34998189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Static and Dynamic Correlations in Water: Comparison of Classical Ab Initio Molecular Dynamics at Elevated Temperature with Path Integral Simulations at Ambient Temperature.
    Li C; Paesani F; Voth GA
    J Chem Theory Comput; 2022 Apr; 18(4):2124-2131. PubMed ID: 35263110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nuclear quantum effects on zeolite proton hopping kinetics explored with machine learning potentials and path integral molecular dynamics.
    Bocus M; Goeminne R; Lamaire A; Cools-Ceuppens M; Verstraelen T; Van Speybroeck V
    Nat Commun; 2023 Feb; 14(1):1008. PubMed ID: 36823162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.