BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36269910)

  • 1. Augmented Reality Driven Steady-State Visual Evoked Potentials for Wheelchair Navigation.
    Sakkalis V; Krana M; Farmaki C; Bourazanis C; Gaitatzis D; Pediaditis M
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2960-2969. PubMed ID: 36269910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of stimulus number on the recognition accuracy and information transfer rate of SSVEP-BCI in augmented reality.
    Zhang R; Xu Z; Zhang L; Cao L; Hu Y; Lu B; Shi L; Yao D; Zhao X
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35477130
    [No Abstract]   [Full Text] [Related]  

  • 3. SSVEP based Wheelchair Navigation in Outdoor Environments
    Krana M; Farmaki C; Pediaditis M; Sakkalis V
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6424-6427. PubMed ID: 34892582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Electric Wheelchair Manipulating System Using SSVEP-Based BCI System.
    Chen W; Chen SK; Liu YH; Chen YJ; Chen CS
    Biosensors (Basel); 2022 Sep; 12(10):. PubMed ID: 36290910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An SSVEP-BCI in Augmented Reality.
    Liu P; Ke Y; Du J; Liu W; Kong L; Wang N; An X; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5548-5551. PubMed ID: 31947111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Robotic arm control system based on augmented reality brain-computer interface and computer vision].
    Chen X; Li K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Jun; 38(3):483-491. PubMed ID: 34180193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An online SSVEP-BCI system in an optical see-through augmented reality environment.
    Ke Y; Liu P; An X; Song X; Ming D
    J Neural Eng; 2020 Feb; 17(1):016066. PubMed ID: 31614342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced System Robustness of Asynchronous BCI in Augmented Reality Using Steady-State Motion Visual Evoked Potential.
    Ravi A; Lu J; Pearce S; Jiang N
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():85-95. PubMed ID: 34990366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of Augmented Reality Based Brain- Computer Interface and Computer Vision for High-Level Control of a Robotic Arm.
    Chen X; Huang X; Wang Y; Gao X
    IEEE Trans Neural Syst Rehabil Eng; 2020 Dec; 28(12):3140-3147. PubMed ID: 33196442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid SSVEP-motion visual stimulus based BCI system for intelligent wheelchair.
    Punsawad Y; Wongsawat Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7416-9. PubMed ID: 24111459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Training the spatially-coded SSVEP BCI on the fly.
    Maÿe A; Mutz M; Engel AK
    J Neurosci Methods; 2022 Aug; 378():109652. PubMed ID: 35716819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards BCI-Based Interfaces for Augmented Reality: Feasibility, Design and Evaluation.
    Si-Mohammed H; Petit J; Jeunet C; Argelaguet F; Spindler F; Evain A; Roussel N; Casiez G; Lecuyer A
    IEEE Trans Vis Comput Graph; 2020 Mar; 26(3):1608-1621. PubMed ID: 30295623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain-computer interface.
    Diez PF; Torres Müller SM; Mut VA; Laciar E; Avila E; Bastos-Filho TF; Sarcinelli-Filho M
    Med Eng Phys; 2013 Aug; 35(8):1155-64. PubMed ID: 23339894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A hybrid brain computer interface system based on the neurophysiological protocol and brain-actuated switch for wheelchair control.
    Cao L; Li J; Ji H; Jiang C
    J Neurosci Methods; 2014 May; 229():33-43. PubMed ID: 24713576
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Steady-State Visual Evoked Potential Classification Using Complex Valued Convolutional Neural Networks.
    Ikeda A; Washizawa Y
    Sensors (Basel); 2021 Aug; 21(16):. PubMed ID: 34450751
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Training -Free Steady-State Visual Evoked Potential Brain-Computer Interface Based on Filter Bank Canonical Correlation Analysis and Spatiotemporal Beamforming Decoding.
    Ge S; Jiang Y; Wang P; Wang H; Zheng W
    IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1714-1723. PubMed ID: 31403435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation and application of a hybrid brain computer interface for real wheelchair parallel control with multi-degree of freedom.
    Li J; Ji H; Cao L; Zang D; Gu R; Xia B; Wu Q
    Int J Neural Syst; 2014 Jun; 24(4):1450014. PubMed ID: 24694169
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving AR-SSVEP Recognition Accuracy Under High Ambient Brightness Through Iterative Learning.
    Zhang R; Cao L; Xu Z; Zhang Y; Zhang L; Hu Y; Chen M; Yao D
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():1796-1806. PubMed ID: 37030737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.