These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 36270007)
1. Indirect Band Gap Semiconductors for Thin-Film Photovoltaics: High-Throughput Calculation of Phonon-Assisted Absorption. Kangsabanik J; Svendsen MK; Taghizadeh A; Crovetto A; Thygesen KS J Am Chem Soc; 2022 Nov; 144(43):19872-19883. PubMed ID: 36270007 [TBL] [Abstract][Full Text] [Related]
2. First-principles DFT insights into the structural, elastic, and optoelectronic properties of α and β-ZnP Živković A; Farkaš B; Uahengo V; de Leeuw NH; Dzade NY J Phys Condens Matter; 2019 Jul; 31(26):265501. PubMed ID: 30889559 [TBL] [Abstract][Full Text] [Related]
3. Screening Promising Thermoelectric Materials in Binary Chalcogenides through High-Throughput Computations. Jia T; Feng Z; Guo S; Zhang X; Zhang Y ACS Appl Mater Interfaces; 2020 Mar; 12(10):11852-11864. PubMed ID: 32069390 [TBL] [Abstract][Full Text] [Related]
4. Solution processed metal chalcogenide semiconductors for inorganic thin film photovoltaics. Turnley JW; Agrawal R Chem Commun (Camb); 2024 May; 60(40):5245-5269. PubMed ID: 38683572 [TBL] [Abstract][Full Text] [Related]
5. Atomically thin arsenene and antimonene: semimetal-semiconductor and indirect-direct band-gap transitions. Zhang S; Yan Z; Li Y; Chen Z; Zeng H Angew Chem Int Ed Engl; 2015 Mar; 54(10):3112-5. PubMed ID: 25564773 [TBL] [Abstract][Full Text] [Related]
6. Wide Band Gap Chalcogenide Semiconductors. Woods-Robinson R; Han Y; Zhang H; Ablekim T; Khan I; Persson KA; Zakutayev A Chem Rev; 2020 May; 120(9):4007-4055. PubMed ID: 32250103 [TBL] [Abstract][Full Text] [Related]
7. Identification of potential photovoltaic absorbers based on first-principles spectroscopic screening of materials. Yu L; Zunger A Phys Rev Lett; 2012 Feb; 108(6):068701. PubMed ID: 22401127 [TBL] [Abstract][Full Text] [Related]
8. Limitations of Cs Ghosh B; Wu B; Mulmudi HK; Guet C; Weber K; Sum TC; Mhaisalkar S; Mathews N ACS Appl Mater Interfaces; 2018 Oct; 10(41):35000-35007. PubMed ID: 29338175 [TBL] [Abstract][Full Text] [Related]
9. Band Gap Engineering in an Efficient Solar-Driven Interfacial Evaporation System. Ying P; Li M; Yu F; Geng Y; Zhang L; He J; Zheng Y; Chen R ACS Appl Mater Interfaces; 2020 Jul; 12(29):32880-32887. PubMed ID: 32589006 [TBL] [Abstract][Full Text] [Related]
10. Feature-Assisted Machine Learning for Predicting Band Gaps of Binary Semiconductors. Huo S; Zhang S; Wu Q; Zhang X Nanomaterials (Basel); 2024 Feb; 14(5):. PubMed ID: 38470776 [TBL] [Abstract][Full Text] [Related]
13. First-principles analysis of the spectroscopic limited maximum efficiency of photovoltaic absorber layers for CuAu-like chalcogenides and silicon. Bercx M; Sarmadian N; Saniz R; Partoens B; Lamoen D Phys Chem Chem Phys; 2016 Jul; 18(30):20542-9. PubMed ID: 27405243 [TBL] [Abstract][Full Text] [Related]
14. Experimental and First-Principles Spectroscopy of Cu Crovetto A; Xing Z; Fischer M; Nielsen R; Savory CN; Rindzevicius T; Stenger N; Scanlon DO; Chorkendorff I; Vesborg PCK ACS Appl Mater Interfaces; 2020 Nov; 12(45):50446-50454. PubMed ID: 33108169 [TBL] [Abstract][Full Text] [Related]
15. Crystallize It before It Diffuses: Kinetic Stabilization of Thin-Film Phosphorus-Rich Semiconductor CuP Crovetto A; Kojda D; Yi F; Heinselman KN; LaVan DA; Habicht K; Unold T; Zakutayev A J Am Chem Soc; 2022 Jul; 144(29):13334-13343. PubMed ID: 35822809 [TBL] [Abstract][Full Text] [Related]
16. Narrowing the Band Gap: The Key to High-Performance Organic Photovoltaics. Cheng P; Yang Y Acc Chem Res; 2020 Jun; 53(6):1218-1228. PubMed ID: 32407622 [TBL] [Abstract][Full Text] [Related]
17. Spiers Memorial Lecture: Next generation chalcogenide-based absorbers for thin-film solar cells. Mitzi DB; Kim Y Faraday Discuss; 2022 Oct; 239(0):9-37. PubMed ID: 36065897 [TBL] [Abstract][Full Text] [Related]
18. Defect Tolerant Semiconductors for Solar Energy Conversion. Zakutayev A; Caskey CM; Fioretti AN; Ginley DS; Vidal J; Stevanovic V; Tea E; Lany S J Phys Chem Lett; 2014 Apr; 5(7):1117-25. PubMed ID: 26274458 [TBL] [Abstract][Full Text] [Related]
19. Pinning down high-performance Cu-chalcogenides as thin-film solar cell absorbers: A successive screening approach. Zhang Y; Wang Y; Zhang J; Xi L; Zhang P; Zhang W J Chem Phys; 2016 May; 144(19):194706. PubMed ID: 27208964 [TBL] [Abstract][Full Text] [Related]
20. Unified theory of electron-phonon renormalization and phonon-assisted optical absorption. Patrick CE; Giustino F J Phys Condens Matter; 2014 Sep; 26(36):365503. PubMed ID: 25134725 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]