These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 36270018)
41. UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering. Izadifar M; Chapman D; Babyn P; Chen X; Kelly ME Tissue Eng Part C Methods; 2018 Feb; 24(2):74-88. PubMed ID: 29050528 [TBL] [Abstract][Full Text] [Related]
42. Carbon nanotubes: artificial nanomaterials to engineer single neurons and neuronal networks. Fabbro A; Bosi S; Ballerini L; Prato M ACS Chem Neurosci; 2012 Aug; 3(8):611-8. PubMed ID: 22896805 [TBL] [Abstract][Full Text] [Related]
43. Thin films of functionalized carbon nanotubes support long-term maintenance and cardio-neuronal differentiation of canine induced pluripotent stem cells. Mondal T; Das K; Singh P; Natarajan M; Manna B; Ghosh A; Singh P; Saha SK; Dhama K; Dutt T; Bag S Nanomedicine; 2022 Feb; 40():102487. PubMed ID: 34740869 [TBL] [Abstract][Full Text] [Related]
44. Aligned multi-walled carbon nanotubes with nanohydroxyapatite in a 3D printed polycaprolactone scaffold stimulates osteogenic differentiation. Huang B; Vyas C; Byun JJ; El-Newehy M; Huang Z; Bártolo P Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110374. PubMed ID: 31924043 [TBL] [Abstract][Full Text] [Related]
45. Multi and single walled carbon nanotubes: effects on cell responses and biomineralization of osteoblasts cultures. Zancanela DC; de Faria AN; Simão AM; Gonçalves RR; Ramos AP; Ciancaglini P J Mater Sci Mater Med; 2016 Mar; 27(3):62. PubMed ID: 26800693 [TBL] [Abstract][Full Text] [Related]
46. In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds. Park S; Park J; Jo I; Cho SP; Sung D; Ryu S; Park M; Min KA; Kim J; Hong S; Hong BH; Kim BS Biomaterials; 2015 Jul; 58():93-102. PubMed ID: 25941786 [TBL] [Abstract][Full Text] [Related]
47. Deposition and transport of functionalized carbon nanotubes in water-saturated sand columns. Tian Y; Gao B; Wang Y; Morales VL; Carpena RM; Huang Q; Yang L J Hazard Mater; 2012 Apr; 213-214():265-72. PubMed ID: 22361629 [TBL] [Abstract][Full Text] [Related]
48. Role of carbon nanotubes (CNTs) in transgenic plant development. Pawar P; Anumalla S; Sharma S Biotechnol Bioeng; 2023 Dec; 120(12):3493-3500. PubMed ID: 37691181 [TBL] [Abstract][Full Text] [Related]
50. Carbon Nanotube Reinforced Supramolecular Hydrogels for Bioapplications. Mihajlovic M; Mihajlovic M; Dankers PYW; Masereeuw R; Sijbesma RP Macromol Biosci; 2019 Jan; 19(1):e1800173. PubMed ID: 30085403 [TBL] [Abstract][Full Text] [Related]
51. A conducting neural interface of polyurethane/silk-functionalized multiwall carbon nanotubes with enhanced mechanical strength for neuroregeneration. Shrestha S; Shrestha BK; Lee J; Joong OK; Kim BS; Park CH; Kim CS Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():511-523. PubMed ID: 31147022 [TBL] [Abstract][Full Text] [Related]
52. Complex Geometry Strain Sensors Based on 3D Printed Nanocomposites: Spring, Three-Column Device and Footstep-Sensing Platform. Cortés A; Sánchez-Romate XF; Jiménez-Suárez A; Campo M; Esmaeili A; Sbarufatti C; Ureña A; Prolongo SG Nanomaterials (Basel); 2021 Apr; 11(5):. PubMed ID: 33922883 [TBL] [Abstract][Full Text] [Related]
53. Carbon nanotubes leading the way forward in new generation 3D tissue engineering. Hopley EL; Salmasi S; Kalaskar DM; Seifalian AM Biotechnol Adv; 2014; 32(5):1000-14. PubMed ID: 24858314 [TBL] [Abstract][Full Text] [Related]
54. Transport of surface-modified multi-walled carbon nanotubes in saturated porous media. Tan M; Liu L; Li D; Li C Environ Sci Pollut Res Int; 2021 Jun; 28(23):29900-29907. PubMed ID: 33575939 [TBL] [Abstract][Full Text] [Related]
55. Functionalization of carbon nanotubes: manufacturing techniques and properties of customized nanocomponents for molecular-level technology. Akbar S; Taimoor AA Recent Pat Nanotechnol; 2009; 3(2):154-61. PubMed ID: 19519597 [TBL] [Abstract][Full Text] [Related]
56. Effect of bacteria on the transport and deposition of multi-walled carbon nanotubes in saturated porous media. Han P; Zhou D; Tong M; Kim H Environ Pollut; 2016 Jun; 213():895-903. PubMed ID: 27038577 [TBL] [Abstract][Full Text] [Related]
57. Single-walled and multi-walled carbon nanotubes based drug delivery system: Cancer therapy: A review. Dineshkumar B; Krishnakumar K; Bhatt AR; Paul D; Cherian J; John A; Suresh S Indian J Cancer; 2015; 52(3):262-4. PubMed ID: 26905103 [TBL] [Abstract][Full Text] [Related]
58. Buckling analysis of defective cross-linked functionalized single- and double-walled carbon nanotubes with polyethylene chains using molecular dynamics simulations. Ajori S; Ansari R; Parsapour H J Mol Model; 2016 Dec; 22(12):298. PubMed ID: 27900580 [TBL] [Abstract][Full Text] [Related]
59. Development of electrically conductive hybrid nanofibers based on CNT-polyurethane nanocomposite for cardiac tissue engineering. Shokraei N; Asadpour S; Shokraei S; Nasrollahzadeh Sabet M; Faridi-Majidi R; Ghanbari H Microsc Res Tech; 2019 Aug; 82(8):1316-1325. PubMed ID: 31062449 [TBL] [Abstract][Full Text] [Related]
60. Noncovalent functionalization of carbon nanotubes as a scaffold for tissue engineering. Assali M; Kittana N; Alhaj-Qasem S; Hajjyahya M; Abu-Rass H; Alshaer W; Al-Buqain R Sci Rep; 2022 Jul; 12(1):12062. PubMed ID: 35835926 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]