These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36270190)

  • 21. Novel Promotion of Sulfuration for Hg
    Wang C; Hong Q; Ma C; Mei J; Yang S
    Environ Sci Technol; 2021 May; 55(10):7072-7081. PubMed ID: 33955214
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Simultaneous Removal of NO and Hg(0) from Flue Gas over Mn-Ce/Ti-PILCs.
    Wang Y; Shen B; He C; Yue S; Wang F
    Environ Sci Technol; 2015 Aug; 49(15):9355-63. PubMed ID: 26154299
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas.
    Li H; Wu CY; Li Y; Zhang J
    Environ Sci Technol; 2011 Sep; 45(17):7394-400. PubMed ID: 21770402
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Theoretical insights into the oxidation of elemental mercury by O
    Ji W; Meng Y; Fan X; Xiao X; Li F
    Chemosphere; 2022 Jun; 297():134178. PubMed ID: 35240146
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.
    Svoboda K; Hartman M; Šyc M; Pohořelý M; Kameníková P; Jeremiáš M; Durda T
    J Environ Manage; 2016 Jan; 166():499-511. PubMed ID: 26588812
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Adsorption and oxidation of elemental mercury from coal-fired flue gas over activated coke loaded with Mn-Ni oxides.
    Zeng Q; Li C; Li S; Liu M; Du X; Gao L; Zhai Y
    Environ Sci Pollut Res Int; 2019 May; 26(15):15420-15435. PubMed ID: 30941710
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Elemental Mercury Oxidation over Fe-Ti-Mn Spinel: Performance, Mechanism, and Reaction Kinetics.
    Xiong S; Xiao X; Huang N; Dang H; Liao Y; Zou S; Yang S
    Environ Sci Technol; 2017 Jan; 51(1):531-539. PubMed ID: 27997120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An experimental and numerical study of the thermal oxidation of chlorobenzene.
    Higgins B; Thomson MJ; Lucas D; Koshland CP; Sawyer RF
    Chemosphere; 2001; 42(5-7):703-17. PubMed ID: 11219697
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of surface sulfation in mediating the acidity and oxidation ability of nickel modified ceria catalyst for the catalytic elimination of chlorinated organics.
    Wang X; Jiang W; Yin R; Sun P; Lu Y; Wu Z; Weng X
    J Colloid Interface Sci; 2020 Aug; 574():251-259. PubMed ID: 32330751
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous removal of gaseous CO and elemental mercury over Cu-Co modified activated coke at low temperature.
    Gao F; Yan H; Tang X; Yi H; Zhao S; Yu Q; Ni S
    J Environ Sci (China); 2021 Mar; 101():36-48. PubMed ID: 33334530
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Theoretical and experimental investigations of mercury adsorption on hematite surfaces.
    Jung JE; Liguori S; Jew AD; Brown GE; Wilcox J
    J Air Waste Manag Assoc; 2018 Jan; 68(1):39-53. PubMed ID: 28829689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel Effective Catalyst for Elemental Mercury Removal from Coal-Fired Flue Gas and the Mechanism Investigation.
    Chen W; Pei Y; Huang W; Qu Z; Hu X; Yan N
    Environ Sci Technol; 2016 Mar; 50(5):2564-72. PubMed ID: 26815147
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel Counteraction Effect of H
    Wang C; Xie F; Chang S; Ding Z; Mei J; Yang S
    Environ Sci Technol; 2022 Jan; 56(1):642-651. PubMed ID: 34902247
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-grown oxygen vacancies-rich CeO
    Jia T; Wu J; Xiao Y; Liu Q; Wu Q; Qi Y; Qi X
    J Colloid Interface Sci; 2021 Apr; 587():402-416. PubMed ID: 33370662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insight into the effect of facet-dependent surface and oxygen vacancies of CeO
    He W; Ran J; Niu J; Yang G; Ou Z; He Z
    J Hazard Mater; 2020 Oct; 397():122646. PubMed ID: 32353782
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of flue gas on elemental mercury removal capacity of defective carbonaceous surface: A first-principles study.
    He P; Zhang Y; Zhao X; Wei J; Xu T; Wu J; Chen N
    J Hazard Mater; 2021 Feb; 404(Pt B):124013. PubMed ID: 33049557
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synergistic Promotion Effect between NO
    Gan L; Shi W; Li K; Chen J; Peng Y; Li J
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30426-30432. PubMed ID: 30129365
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Co
    Zhu H; Song X; Han X; Zhang X; Bao J; Zhang N; He G
    Environ Sci Technol; 2020 Jul; 54(14):8601-8611. PubMed ID: 32496769
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photocatalytic removal of elemental mercury via Ce-doped TiO
    Xin F; Ma S; Yang J; Zhao Y; Zhang J; Zheng C
    Environ Sci Pollut Res Int; 2020 Jun; 27(17):21281-21291. PubMed ID: 32270458
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of Chlorine Addition on Nitrogen Oxide Reduction and Mercury Oxidation over Selective Catalytic Reduction Catalysts.
    Ji M; Li H; Hu K; Hu J
    ACS Omega; 2022 Apr; 7(14):12098-12110. PubMed ID: 35449900
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.