BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 36270327)

  • 1. TurboID functions as an efficient biotin ligase for BioID applications in Xenopus embryos.
    Kanzler CR; Donohue M; Dowdle ME; Sheets MD
    Dev Biol; 2022 Dec; 492():133-138. PubMed ID: 36270327
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative Application of BioID and TurboID for Protein-Proximity Biotinylation.
    May DG; Scott KL; Campos AR; Roux KJ
    Cells; 2020 Apr; 9(5):. PubMed ID: 32344865
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AirID, a novel proximity biotinylation enzyme, for analysis of protein-protein interactions.
    Kido K; Yamanaka S; Nakano S; Motani K; Shinohara S; Nozawa A; Kosako H; Ito S; Sawasaki T
    Elife; 2020 May; 9():. PubMed ID: 32391793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MicroID2: A Novel Biotin Ligase Enables Rapid Proximity-Dependent Proteomics.
    Johnson BS; Chafin L; Farkas D; Adair J; Elhance A; Farkas L; Bednash JS; Londino JD
    Mol Cell Proteomics; 2022 Jul; 21(7):100256. PubMed ID: 35688383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proximity Dependent Biotin Labelling in Zebrafish for Proteome and Interactome Profiling.
    Xiong Z; Lo HP; McMahon KA; Parton RG; Hall TE
    Bio Protoc; 2021 Oct; 11(19):e4178. PubMed ID: 34722825
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment of in vivo proximity labeling with biotin using TurboID in the filamentous fungus Sordaria macrospora.
    Hollstein LS; Schmitt K; Valerius O; Stahlhut G; Pöggeler S
    Sci Rep; 2022 Oct; 12(1):17727. PubMed ID: 36272986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of TurboID-dependent biotinylation intensity in proximity ligation screens.
    Garloff V; Krüger T; Brakhage A; Rubio I
    J Proteomics; 2023 May; 279():104886. PubMed ID: 36966971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple method for labeling proteins and antibodies with biotin using the proximity biotinylation enzyme TurboID.
    Shioya R; Yamada K; Kido K; Takahashi H; Nozawa A; Kosako H; Sawasaki T
    Biochem Biophys Res Commun; 2022 Feb; 592():54-59. PubMed ID: 35030423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TurboID-Based Proximity Labeling: A Method to Decipher Protein-Protein Interactions in Plants.
    Li Y; Zhang Y; Dinesh-Kumar SP
    Methods Mol Biol; 2024; 2724():257-272. PubMed ID: 37987912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proximity labeling in mammalian cells with TurboID and split-TurboID.
    Cho KF; Branon TC; Udeshi ND; Myers SA; Carr SA; Ting AY
    Nat Protoc; 2020 Dec; 15(12):3971-3999. PubMed ID: 33139955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proximity-dependent biotin labeling in testicular germ cells identified TESMIN-associated proteins.
    Oura S; Ninomiya A; Sugihara F; Matzuk MM; Ikawa M
    Sci Rep; 2022 Dec; 12(1):22198. PubMed ID: 36564444
    [TBL] [Abstract][Full Text] [Related]  

  • 12. AirID-Based Proximity Labeling for Protein-Protein Interaction in Plants.
    Zada A; Khan I; Zhang M; Cheng Y; Hu X
    J Vis Exp; 2022 Sep; (187):. PubMed ID: 36190279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of Planar Cell Polarity Complexes by Proximity Biotinylation in Xenopus Embryos.
    Chuykin I; Sokol SY
    Methods Mol Biol; 2022; 2438():97-106. PubMed ID: 35147937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Streamlined Biotinylation, Enrichment and Analysis for Enhanced Plasma Membrane Protein Identification Using TurboID and TurboID-Start Biotin Ligases.
    Sarihan M; Kasap M; Akpinar G
    J Membr Biol; 2024 Apr; 257(1-2):91-105. PubMed ID: 38289568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An improved smaller biotin ligase for BioID proximity labeling.
    Kim DI; Jensen SC; Noble KA; Kc B; Roux KH; Motamedchaboki K; Roux KJ
    Mol Biol Cell; 2016 Apr; 27(8):1188-96. PubMed ID: 26912792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of BioID tagging systems in budding yeast and exploring the interactome of the Ccr4-Not complex.
    Pfannenstein J; Tyryshkin M; Gulden ME; Doud EH; Mosley AL; Reese JC
    bioRxiv; 2024 May; ():. PubMed ID: 38766143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proximity labeling of protein complexes and cell-type-specific organellar proteomes in
    Mair A; Xu SL; Branon TC; Ting AY; Bergmann DC
    Elife; 2019 Sep; 8():. PubMed ID: 31535972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TurboID-Based Proximity Labeling for In Planta Identification of Protein-Protein Interaction Networks.
    Zhang Y; Li Y; Yang X; Wen Z; Nagalakshmi U; Dinesh-Kumar SP
    J Vis Exp; 2020 May; (159):. PubMed ID: 32478742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular Proteomic Profiling Using Proximity Labeling by TurboID-NES in Microglial and Neuronal Cell Lines.
    Sunna S; Bowen C; Zeng H; Rayaprolu S; Kumar P; Bagchi P; Dammer EB; Guo Q; Duong DM; Bitarafan S; Natu A; Wood L; Seyfried NT; Rangaraju S
    Mol Cell Proteomics; 2023 Jun; 22(6):100546. PubMed ID: 37061046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of FOXO1-interacting proteins using TurboID-based proximity labeling technology.
    Su Y; Guo Y; Guo J; Zeng T; Wang T; Liu W
    BMC Genomics; 2023 Mar; 24(1):146. PubMed ID: 36964488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.