These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 36270327)

  • 21. Study of FOXO1-interacting proteins using TurboID-based proximity labeling technology.
    Su Y; Guo Y; Guo J; Zeng T; Wang T; Liu W
    BMC Genomics; 2023 Mar; 24(1):146. PubMed ID: 36964488
    [TBL] [Abstract][Full Text] [Related]  

  • 22. BioID Analysis of Actin-Binding Proteins.
    Joo EE; Olson MF
    Methods Mol Biol; 2024; 2794():95-104. PubMed ID: 38630223
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Meet the neighbors: Mapping local protein interactomes by proximity-dependent labeling with BioID.
    Varnaitė R; MacNeill SA
    Proteomics; 2016 Oct; 16(19):2503-2518. PubMed ID: 27329485
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient proximity labeling in living cells and organisms with TurboID.
    Branon TC; Bosch JA; Sanchez AD; Udeshi ND; Svinkina T; Carr SA; Feldman JL; Perrimon N; Ting AY
    Nat Biotechnol; 2018 Oct; 36(9):880-887. PubMed ID: 30125270
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proximity Labeling for the Identification of Coronavirus-Host Protein Interactions.
    V'kovski P; Steiner S; Thiel V
    Methods Mol Biol; 2020; 2203():187-204. PubMed ID: 32833213
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interactome analysis of Caenorhabditis elegans synapses by TurboID-based proximity labeling.
    Artan M; Barratt S; Flynn SM; Begum F; Skehel M; Nicolas A; de Bono M
    J Biol Chem; 2021 Sep; 297(3):101094. PubMed ID: 34416233
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Proximity-dependent biotinylation mediated by TurboID to identify protein-protein interaction networks in yeast.
    Larochelle M; Bergeron D; Arcand B; Bachand F
    J Cell Sci; 2019 May; 132(11):. PubMed ID: 31064814
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient induction of proximity-dependent labelling by biotin feeding in BMAL1-BioID knock-in mice.
    Murata K; Mimura A; Suzuki H; Mikami N; Hamada Y; Kato K; Iki N; Ishida M; Daitoku Y; Tanimoto Y; Okiyoneda T; Fujiyama T; Dinh TTH; Mizuno S; Sugiyama F
    J Biochem; 2021 Dec; 170(4):453-461. PubMed ID: 33982090
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification of MPK4 kinase interactome using TurboID proximity labeling proteomics in Arabidopsis thaliana.
    Lin C; Yeo I; Dufresne CP; Zhao G; Joe S; Chen S
    Methods Enzymol; 2022; 676():369-384. PubMed ID: 36280358
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thiol-Cleavable Biotin for Chemical and Enzymatic Biotinylation and Its Application to Mitochondrial TurboID Proteomics.
    Li H; Frankenfield AM; Houston R; Sekine S; Hao L
    J Am Soc Mass Spectrom; 2021 Sep; 32(9):2358-2365. PubMed ID: 33909971
    [TBL] [Abstract][Full Text] [Related]  

  • 31. BioID Identification of Lamin-Associated Proteins.
    Mehus AA; Anderson RH; Roux KJ
    Methods Enzymol; 2016; 569():3-22. PubMed ID: 26778550
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimized Workflow for Enrichment and Identification of Biotinylated Peptides Using Tamavidin 2-REV for BioID and Cell Surface Proteomics.
    Nishino K; Yoshikawa H; Motani K; Kosako H
    J Proteome Res; 2022 Sep; 21(9):2094-2103. PubMed ID: 35979633
    [TBL] [Abstract][Full Text] [Related]  

  • 33.
    Uçkun E; Wolfstetter G; Fuchs J; Palmer RH
    Bio Protoc; 2022 Jul; 12(13):. PubMed ID: 35937934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Light-activated BioID - an optically activated proximity labeling system to study protein-protein interactions.
    Shafraz O; Davis CMO; Sivasankar S
    J Cell Sci; 2023 Oct; 136(19):. PubMed ID: 37756605
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using BioID for the Identification of Interacting and Proximal Proteins in Subcellular Compartments in Toxoplasma gondii.
    Bradley PJ; Rayatpisheh S; Wohlschlegel JA; Nadipuram SM
    Methods Mol Biol; 2020; 2071():323-346. PubMed ID: 31758461
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A modified TurboID approach identifies tissue-specific centriolar components in C. elegans.
    Holzer E; Rumpf-Kienzl C; Falk S; Dammermann A
    PLoS Genet; 2022 Apr; 18(4):e1010150. PubMed ID: 35442950
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Off-the-shelf proximity biotinylation using ProtA-TurboID.
    Santos-Barriopedro I; van Mierlo G; Vermeulen M
    Nat Protoc; 2023 Jan; 18(1):36-57. PubMed ID: 36224470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Establishment of Proximity-Dependent Biotinylation Approaches in Different Plant Model Systems.
    Arora D; Abel NB; Liu C; Van Damme P; Yperman K; Eeckhout D; Vu LD; Wang J; Tornkvist A; Impens F; Korbei B; Van Leene J; Goossens A; De Jaeger G; Ott T; Moschou PN; Van Damme D
    Plant Cell; 2020 Nov; 32(11):3388-3407. PubMed ID: 32843435
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Towards the in vivo identification of protein-protein interactions.
    Suzuki Y; Kadomatsu K; Sakamoto K
    J Biochem; 2023 May; 173(6):413-415. PubMed ID: 36821413
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing nuclear pore complex architecture with proximity-dependent biotinylation.
    Kim DI; Birendra KC; Zhu W; Motamedchaboki K; Doye V; Roux KJ
    Proc Natl Acad Sci U S A; 2014 Jun; 111(24):E2453-61. PubMed ID: 24927568
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.