These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36270430)

  • 1. Quantifying visual acuity for pre-clinical testing of visual prostheses.
    Spencer M; Kameneva T; Grayden DB; Burkitt AN; Meffin H
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36270430
    [No Abstract]   [Full Text] [Related]  

  • 2. Neural activity shaping utilizing a partitioned target pattern.
    Spencer MJ; Kameneva T; Grayden DB; Burkitt AN; Meffin H
    J Neural Eng; 2021 Mar; 18(4):. PubMed ID: 33684894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resolution of the epiretinal prosthesis is not limited by electrode size.
    Behrend MR; Ahuja AK; Humayun MS; Chow RH; Weiland JD
    IEEE Trans Neural Syst Rehabil Eng; 2011 Aug; 19(4):436-42. PubMed ID: 21511569
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modern concepts of bionic vision.
    Kravchenko SV; Sakhnov SN; Myasnikova VV
    Vestn Oftalmol; 2022; 138(3):95-101. PubMed ID: 35801887
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An
    Song X; Qiu S; Shivdasani MN; Zhou F; Liu Z; Ma S; Chai X; Chen Y; Cai X; Guo T; Li L
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35255486
    [No Abstract]   [Full Text] [Related]  

  • 6. Visual acuity of simulated thalamic visual prostheses in normally sighted humans.
    Bourkiza B; Vurro M; Jeffries A; Pezaris JS
    PLoS One; 2013; 8(9):e73592. PubMed ID: 24086286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of prosthetic vision in rats with subretinal flat and pillar electrode arrays.
    Ho E; Lei X; Flores T; Lorach H; Huang T; Galambos L; Kamins T; Harris J; Mathieson K; Palanker D
    J Neural Eng; 2019 Oct; 16(6):066027. PubMed ID: 31341094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved visual acuity using a retinal implant and an optimized stimulation strategy.
    Tong W; Stamp M; Apollo NV; Ganesan K; Meffin H; Prawer S; Garrett DJ; Ibbotson MR
    J Neural Eng; 2019 Dec; 17(1):016018. PubMed ID: 31665704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformer-based light-evoked retinal spiking activity prediction.
    Zhang M; Kekesi O; Suaning GJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Virtual electrodes by current steering in retinal prostheses.
    Dumm G; Fallon JB; Williams CE; Shivdasani MN
    Invest Ophthalmol Vis Sci; 2014 Oct; 55(12):8077-85. PubMed ID: 25335975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessing the efficacy of visual prostheses by decoding ms-LFPs: application to retinal implants.
    Cottaris NP; Elfar SD
    J Neural Eng; 2009 Apr; 6(2):026007. PubMed ID: 19289859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessing the utility of visual acuity measures in visual prostheses.
    Caspi A; Zivotofsky AZ
    Vision Res; 2015 Mar; 108():77-84. PubMed ID: 25637855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of extraocular electrodes for a retinal prosthesis using evoked potentials in cat visual cortex.
    Chowdhury V; Morley JW; Coroneo MT
    J Clin Neurosci; 2005 Jun; 12(5):574-9. PubMed ID: 16051097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Restoring Color Perception to the Blind: An Electrical Stimulation Strategy of Retina in Patients with End-stage Retinitis Pigmentosa.
    Yue L; Castillo J; Gonzalez AC; Neitz J; Humayun MS
    Ophthalmology; 2021 Mar; 128(3):453-462. PubMed ID: 32858064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vision function testing for a suprachoroidal retinal prosthesis: effects of image filtering.
    Barnes N; Scott AF; Lieby P; Petoe MA; McCarthy C; Stacey A; Ayton LN; Sinclair NC; Shivdasani MN; Lovell NH; McDermott HJ; Walker JG
    J Neural Eng; 2016 Jun; 13(3):036013. PubMed ID: 27108845
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of visual perception and learning with a retinal prosthesis.
    Golden JR; Erickson-Davis C; Cottaris NP; Parthasarathy N; Rieke F; Brainard DH; Wandell BA; Chichilnisky EJ
    J Neural Eng; 2019 Apr; 16(2):025003. PubMed ID: 30523985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retinal Prosthetic Approaches to Enhance Visual Perception for Blind Patients.
    Shim S; Eom K; Jeong J; Kim SJ
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32456341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restoration of vision in blind individuals using bionic devices: a review with a focus on cortical visual prostheses.
    Lewis PM; Ackland HM; Lowery AJ; Rosenfeld JV
    Brain Res; 2015 Jan; 1595():51-73. PubMed ID: 25446438
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Retina-electrode interface properties and vision restoration by two generations of retinal prostheses in one patient-one in each eye.
    Yue L; Wuyyuru V; Gonzalez-Calle A; Dorn JD; Humayun MS
    J Neural Eng; 2020 Apr; 17(2):026020. PubMed ID: 32131056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurophysiological considerations for visual implants.
    Meikle SJ; Wong YT
    Brain Struct Funct; 2022 May; 227(4):1523-1543. PubMed ID: 34773502
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.