These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 36270430)

  • 21. Clinical Progress and Optimization of Information Processing in Artificial Visual Prostheses.
    Wang J; Zhao R; Li P; Fang Z; Li Q; Han Y; Zhou R; Zhang Y
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36081002
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving the spatial resolution of artificial vision using midget retinal ganglion cell populations modeled at the human fovea.
    Italiano ML; Guo T; Lovell NH; Tsai D
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35609556
    [No Abstract]   [Full Text] [Related]  

  • 23. Retinal Prosthetic Approaches to Enhance Visual Perception for Blind Patients.
    Shim S; Eom K; Jeong J; Kim SJ
    Micromachines (Basel); 2020 May; 11(5):. PubMed ID: 32456341
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Visual cortex responses to single- and simultaneous multiple-electrode stimulation of the retina: implications for retinal prostheses.
    Shivdasani MN; Fallon JB; Luu CD; Cicione R; Allen PJ; Morley JW; Williams CE
    Invest Ophthalmol Vis Sci; 2012 Sep; 53(10):6291-300. PubMed ID: 22899754
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptation to Phosphene Parameters Based on Multi-Object Recognition Using Simulated Prosthetic Vision.
    Xia P; Hu J; Peng Y
    Artif Organs; 2015 Dec; 39(12):1038-45. PubMed ID: 25912967
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intracortical current steering shifts the location of evoked neural activity.
    Meikle SJ; Hagan MA; Price NSC; Wong YT
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35688125
    [No Abstract]   [Full Text] [Related]  

  • 27. Spatiotemporal interactions in the visual cortex following paired electrical stimulation of the retina.
    Cicione R; Fallon JB; Rathbone GD; Williams CE; Shivdasani MN
    Invest Ophthalmol Vis Sci; 2014 Nov; 55(12):7726-38. PubMed ID: 25370517
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tunable retina encoders for retina implants: why and how.
    Eckmiller R; Neumann D; Baruth O
    J Neural Eng; 2005 Mar; 2(1):S91-S104. PubMed ID: 15876659
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Implantable metaverse with retinal prostheses and bionic vision processing.
    Xi N; Ye J; Chen CP; Chu Q; Hu H; Zou SP
    Opt Express; 2023 Jan; 31(2):1079-1091. PubMed ID: 36785150
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrananocrystalline diamond-CMOS device integration route for high acuity retinal prostheses.
    Ahnood A; Escudie MC; Cicione R; Abeyrathne CD; Ganesan K; Fox KE; Garrett DJ; Stacey A; Apollo NV; Lichter SG; Thomas CD; Tran N; Meffin H; Prawer S
    Biomed Microdevices; 2015; 17(3):9952. PubMed ID: 25877379
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bionic eye review - An update.
    Nowik K; Langwińska-Wośko E; Skopiński P; Nowik KE; Szaflik JP
    J Clin Neurosci; 2020 Aug; 78():8-19. PubMed ID: 32571603
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Oculomotor behavior of blind patients seeing with a subretinal visual implant.
    Hafed ZM; Stingl K; Bartz-Schmidt KU; Gekeler F; Zrenner E
    Vision Res; 2016 Jan; 118():119-31. PubMed ID: 25906684
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An optimized content-aware image retargeting method: toward expanding the perceived visual field of the high-density retinal prosthesis recipients.
    Li H; Zeng Y; Lu Z; Cao X; Su X; Sui X; Wang J; Chai X
    J Neural Eng; 2018 Apr; 15(2):026025. PubMed ID: 29076459
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photovoltaic implant simulator reveals resolution limits in subretinal prosthesis.
    Chen ZC; Wang BY; Kochnev Goldstein A; Butt E; Mathieson K; Palanker D
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36055219
    [No Abstract]   [Full Text] [Related]  

  • 35. A Three-Dimensional Microelectrode Array to Generate Virtual Electrodes for Epiretinal Prosthesis Based on a Modeling Study.
    Lyu Q; Lu Z; Li H; Qiu S; Guo J; Sui X; Sun P; Li L; Chai X; Lovell NH
    Int J Neural Syst; 2020 Mar; 30(3):2050006. PubMed ID: 32116093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advances in Neuroscience, Not Devices, Will Determine the Effectiveness of Visual Prostheses.
    Abbasi B; Rizzo JF
    Semin Ophthalmol; 2021 May; 36(4):168-175. PubMed ID: 33734937
    [No Abstract]   [Full Text] [Related]  

  • 37. Electronic photoreceptors enable prosthetic visual acuity matching the natural resolution in rats.
    Wang BY; Chen ZC; Bhuckory M; Huang T; Shin A; Zuckerman V; Ho E; Rosenfeld E; Galambos L; Kamins T; Mathieson K; Palanker D
    Nat Commun; 2022 Nov; 13(1):6627. PubMed ID: 36333326
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A multi-scale computational model for the study of retinal prosthetic stimulation.
    Loizos K; Lazzi G; Lauritzen JS; Anderson J; Jones BW; Marc R
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6100-3. PubMed ID: 25571389
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optical coherence tomography-guided retinal prosthesis design: model of degenerated retinal curvature and thickness for patient-specific devices.
    Opie NL; Ayton LN; Apollo NV; Ganesan K; Guymer RH; Luu CD
    Artif Organs; 2014 Jun; 38(6):E82-94. PubMed ID: 24689741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Minimizing Iridium Oxide Electrodes for High Visual Acuity Subretinal Stimulation.
    Damle S; Carleton M; Kapogianis T; Arya S; Cavichini-Corderio M; Freeman WR; Lo YH; Oesch NW
    eNeuro; 2021; 8(6):. PubMed ID: 34799411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.