These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 36270430)

  • 41. Human-in-the-loop optimization of visual prosthetic stimulation.
    Fauvel T; Chalk M
    J Neural Eng; 2022 Jun; 19(3):. PubMed ID: 35667363
    [No Abstract]   [Full Text] [Related]  

  • 42. Building the bionic eye: an emerging reality and opportunity.
    Merabet LB
    Prog Brain Res; 2011; 192():3-15. PubMed ID: 21763515
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Towards an assistive peripheral visual prosthesis for long-term treatment of retinitis pigmentosa: evaluating mobility performance in immersive simulations.
    Zapf MP; Boon MY; Matteucci PB; Lovell NH; Suaning GJ
    J Neural Eng; 2015 Jun; 12(3):036001. PubMed ID: 25782059
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Virtual reality simulation of epiretinal stimulation highlights the relevance of the visual angle in prosthetic vision.
    Thorn JT; Migliorini E; Ghezzi D
    J Neural Eng; 2020 Nov; 17(5):056019. PubMed ID: 33146146
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pixel size limit of the PRIMA implants: from humans to rodents and back.
    Wang BY; Chen ZC; Bhuckory M; Kochnev Goldstein A; Palanker D
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36044878
    [No Abstract]   [Full Text] [Related]  

  • 46. Visual prostheses for the blind.
    Shepherd RK; Shivdasani MN; Nayagam DA; Williams CE; Blamey PJ
    Trends Biotechnol; 2013 Oct; 31(10):562-71. PubMed ID: 23953722
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predicting visual sensitivity in retinal prosthesis patients.
    Horsager A; Greenwald SH; Weiland JD; Humayun MS; Greenberg RJ; McMahon MJ; Boynton GM; Fine I
    Invest Ophthalmol Vis Sci; 2009 Apr; 50(4):1483-91. PubMed ID: 19098313
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prediction of cortical responses to simultaneous electrical stimulation of the retina.
    Halupka KJ; Shivdasani MN; Cloherty SL; Grayden DB; Wong YT; Burkitt AN; Meffin H
    J Neural Eng; 2017 Feb; 14(1):016006. PubMed ID: 27900949
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Access resistance of stimulation electrodes as a function of electrode proximity to the retina.
    Majdi JA; Minnikanti S; Peixoto N; Agrawal A; Cohen ED
    J Neural Eng; 2015 Feb; 12(1):016006. PubMed ID: 25474329
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nature-inspired saccadic-like electrical stimulation paradigm promotes sustained retinal ganglion cell responses by spatiotemporally alternating activation of contiguous multi-electrode patterns.
    Haq W; Basavaraju S; Speck A; Zrenner E
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 36066085
    [No Abstract]   [Full Text] [Related]  

  • 51. Artificial vision with wirelessly powered subretinal electronic implant alpha-IMS.
    Stingl K; Bartz-Schmidt KU; Besch D; Braun A; Bruckmann A; Gekeler F; Greppmaier U; Hipp S; Hörtdörfer G; Kernstock C; Koitschev A; Kusnyerik A; Sachs H; Schatz A; Stingl KT; Peters T; Wilhelm B; Zrenner E
    Proc Biol Sci; 2013 Apr; 280(1757):20130077. PubMed ID: 23427175
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Factors affecting perceptual thresholds in epiretinal prostheses.
    de Balthasar C; Patel S; Roy A; Freda R; Greenwald S; Horsager A; Mahadevappa M; Yanai D; McMahon MJ; Humayun MS; Greenberg RJ; Weiland JD; Fine I
    Invest Ophthalmol Vis Sci; 2008 Jun; 49(6):2303-14. PubMed ID: 18515576
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Flexible ultrasound-induced retinal stimulating piezo-arrays for biomimetic visual prostheses.
    Jiang L; Lu G; Zeng Y; Sun Y; Kang H; Burford J; Gong C; Humayun MS; Chen Y; Zhou Q
    Nat Commun; 2022 Jul; 13(1):3853. PubMed ID: 35788594
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spatially patterned bi-electrode epiretinal stimulation for axon avoidance at cellular resolution.
    Vilkhu RS; Madugula SS; Grosberg LE; Gogliettino AR; Hottowy P; Dabrowski W; Sher A; Litke AM; Mitra S; Chichilnisky EJ
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34710857
    [No Abstract]   [Full Text] [Related]  

  • 55. Cortical Interactions between Prosthetic and Natural Vision.
    Arens-Arad T; Farah N; Lender R; Moshkovitz A; Flores T; Palanker D; Mandel Y
    Curr Biol; 2020 Jan; 30(1):176-182.e2. PubMed ID: 31883811
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Virtual reality validation of naturalistic modulation strategies to counteract fading in retinal stimulation.
    Thorn JT; Chenais NAL; Hinrichs S; Chatelain M; Ghezzi D
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35240583
    [No Abstract]   [Full Text] [Related]  

  • 57. Epiretinal stimulation with local returns enhances selectivity at cellular resolution.
    Fan VH; Grosberg LE; Madugula SS; Hottowy P; Dabrowski W; Sher A; Litke AM; Chichilnisky EJ
    J Neural Eng; 2019 Apr; 16(2):025001. PubMed ID: 30523958
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Vision change after sheet transplant of fetal retina with retinal pigment epithelium to a patient with retinitis pigmentosa.
    Radtke ND; Aramant RB; Seiler MJ; Petry HM; Pidwell D
    Arch Ophthalmol; 2004 Aug; 122(8):1159-65. PubMed ID: 15302656
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrode Dropout Compensation in Visual Prostheses: An Optimal Object Placement Approach.
    Elnabawy RH; Abdennadher S; Hellwich O; Eldawlatly S
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6515-6518. PubMed ID: 34892602
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simulation of epiretinal prostheses - evaluation of geometrical factors affecting stimulation thresholds.
    Kasi H; Hasenkamp W; Cosendai G; Bertsch A; Renaud P
    J Neuroeng Rehabil; 2011 Aug; 8():44. PubMed ID: 21854602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.