BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36271091)

  • 1. Probing the ultrafast dynamics of excitons in single semiconducting carbon nanotubes.
    Birkmeier K; Hertel T; Hartschuh A
    Nat Commun; 2022 Oct; 13(1):6290. PubMed ID: 36271091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Excitons in Single-Walled Carbon Nanotubes and Their Dynamics.
    Amori AR; Hou Z; Krauss TD
    Annu Rev Phys Chem; 2018 Apr; 69():81-99. PubMed ID: 29401037
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitons in semiconducting carbon nanotubes: diameter-dependent photoluminescence spectra.
    Kanemitsu Y
    Phys Chem Chem Phys; 2011 Sep; 13(33):14879-88. PubMed ID: 21735026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exciton binding energy in semiconducting single-walled carbon nanotubes.
    Ma YZ; Valkunas L; Bachilo SM; Fleming GR
    J Phys Chem B; 2005 Aug; 109(33):15671-4. PubMed ID: 16852986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct observation of deep excitonic states in the photoluminescence spectra of single-walled carbon nanotubes.
    Kiowski O; Arnold K; Lebedkin S; Hennrich F; Kappes MM
    Phys Rev Lett; 2007 Dec; 99(23):237402. PubMed ID: 18233410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy.
    Ma YZ; Stenger J; Zimmermann J; Bachilo SM; Smalley RE; Weisman RB; Fleming GR
    J Chem Phys; 2004 Feb; 120(7):3368-73. PubMed ID: 15268491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast spectroscopy of excitons in single-walled carbon nanotubes.
    Korovyanko OJ; Sheng CX; Vardeny ZV; Dalton AB; Baughman RH
    Phys Rev Lett; 2004 Jan; 92(1):017403. PubMed ID: 14754017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum dot-like excitonic behavior in individual single walled-carbon nanotubes.
    Wang X; Alexander-Webber JA; Jia W; Reid BP; Stranks SD; Holmes MJ; Chan CC; Deng C; Nicholas RJ; Taylor RA
    Sci Rep; 2016 Nov; 6():37167. PubMed ID: 27849046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Probing excitons in transition metal dichalcogenides by Drude-like exciton intraband absorption.
    Zhao S; He D; He J; Zhang X; Yi L; Wang Y; Zhao H
    Nanoscale; 2018 May; 10(20):9538-9546. PubMed ID: 29745949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: evidence for exciton-exciton annihilation.
    Ma YZ; Valkunas L; Dexheimer SL; Bachilo SM; Fleming GR
    Phys Rev Lett; 2005 Apr; 94(15):157402. PubMed ID: 15904186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High energetic excitons in carbon nanotubes directly probe charge-carriers.
    Soavi G; Scotognella F; Viola D; Hefner T; Hertel T; Cerullo G; Lanzani G
    Sci Rep; 2015 May; 5():9681. PubMed ID: 25959462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defect-induced photoluminescence from dark excitonic states in individual single-walled carbon nanotubes.
    Harutyunyan H; Gokus T; Green AA; Hersam MC; Allegrini M; Hartschuh A
    Nano Lett; 2009 May; 9(5):2010-4. PubMed ID: 19331347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saturation of the photoluminescence at few-exciton levels in a single-walled carbon nanotube under ultrafast excitation.
    Xiao YF; Nhan TQ; Wilson MW; Fraser JM
    Phys Rev Lett; 2010 Jan; 104(1):017401. PubMed ID: 20366391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Below-gap excitation of semiconducting single-wall carbon nanotubes.
    Soavi G; Grupp A; Budweg A; Scotognella F; Hefner T; Hertel T; Lanzani G; Leitenstorfer A; Cerullo G; Brida D
    Nanoscale; 2015 Nov; 7(43):18337-42. PubMed ID: 26488340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exciton-exciton annihilation and relaxation pathways in semiconducting carbon nanotubes.
    Chmeliov J; Narkeliunas J; Graham MW; Fleming GR; Valkunas L
    Nanoscale; 2016 Jan; 8(3):1618-26. PubMed ID: 26689166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast exciton energy transfer between nanoscale coaxial cylinders: intertube transfer and luminescence quenching in double-walled carbon nanotubes.
    Koyama T; Asada Y; Hikosaka N; Miyata Y; Shinohara H; Nakamura A
    ACS Nano; 2011 Jul; 5(7):5881-7. PubMed ID: 21682277
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron-electron interaction effects on the photophysics of metallic single-walled carbon nanotubes.
    Wang Z; Psiachos D; Badilla RF; Mazumdar S
    J Phys Condens Matter; 2009 Mar; 21(9):095009. PubMed ID: 21817382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transient absorption spectroscopy and imaging of individual chirality-assigned single-walled carbon nanotubes.
    Gao B; Hartland GV; Huang L
    ACS Nano; 2012 Jun; 6(6):5083-90. PubMed ID: 22577898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.