These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36271168)

  • 1. Estimating the tuberculosis incidence using a SARIMAX-NNARX hybrid model by integrating meteorological factors in Qinghai Province, China.
    Liang W; Hu A; Hu P; Zhu J; Wang Y
    Int J Biometeorol; 2023 Jan; 67(1):55-65. PubMed ID: 36271168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Advanced Data-Driven Hybrid Model of SARIMA-NNNAR for Tuberculosis Incidence Time Series Forecasting in Qinghai Province, China.
    Wang Y; Xu C; Li Y; Wu W; Gui L; Ren J; Yao S
    Infect Drug Resist; 2020; 13():867-880. PubMed ID: 32273731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal trends analysis of tuberculosis morbidity in mainland China from 1997 to 2025 using a new SARIMA-NARNNX hybrid model.
    Wang Y; Xu C; Zhang S; Wang Z; Yang L; Zhu Y; Yuan J
    BMJ Open; 2019 Jul; 9(7):e024409. PubMed ID: 31371283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time series analysis of mumps and meteorological factors in Beijing, China.
    Hao Y; Wang RR; Han L; Wang H; Zhang X; Tang QL; Yan L; He J
    BMC Infect Dis; 2019 May; 19(1):435. PubMed ID: 31101079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A hybrid seasonal prediction model for tuberculosis incidence in China.
    Cao S; Wang F; Tam W; Tse LA; Kim JH; Liu J; Lu Z
    BMC Med Inform Decis Mak; 2013 May; 13():56. PubMed ID: 23638635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning Prediction Model of Tuberculosis Incidence Based on Meteorological Factors and Air Pollutants.
    Tang N; Yuan M; Chen Z; Ma J; Sun R; Yang Y; He Q; Guo X; Hu S; Zhou J
    Int J Environ Res Public Health; 2023 Feb; 20(5):. PubMed ID: 36900920
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time-series analysis of tuberculosis from 2005 to 2017 in China.
    Wang H; Tian CW; Wang WM; Luo XM
    Epidemiol Infect; 2018 Jun; 146(8):935-939. PubMed ID: 29708082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Forecasting zoonotic cutaneous leishmaniasis using meteorological factors in eastern Fars province, Iran: a SARIMA analysis.
    Tohidinik HR; Mohebali M; Mansournia MA; Niakan Kalhori SR; Ali-Akbarpour M; Yazdani K
    Trop Med Int Health; 2018 Aug; 23(8):860-869. PubMed ID: 29790236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship of meteorological factors and human brucellosis in Hebei province, China.
    Cao LT; Liu HH; Li J; Yin XD; Duan Y; Wang J
    Sci Total Environ; 2020 Feb; 703():135491. PubMed ID: 31740063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Seasonality and Trend Forecasting of Tuberculosis Incidence in Chongqing, China.
    Liao Z; Zhang X; Zhang Y; Peng D
    Interdiscip Sci; 2019 Mar; 11(1):77-85. PubMed ID: 30734907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Forecasting the Tuberculosis Incidence Using a Novel Ensemble Empirical Mode Decomposition-Based Data-Driven Hybrid Model in Tibet, China.
    Li J; Li Y; Ye M; Yao S; Yu C; Wang L; Wu W; Wang Y
    Infect Drug Resist; 2021; 14():1941-1955. PubMed ID: 34079304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seasonality and Trend Forecasting of Tuberculosis Prevalence Data in Eastern Cape, South Africa, Using a Hybrid Model.
    Azeez A; Obaromi D; Odeyemi A; Ndege J; Muntabayi R
    Int J Environ Res Public Health; 2016 Jul; 13(8):. PubMed ID: 27472353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatiotemporal characteristics and the epidemiology of tuberculosis in China from 2004 to 2017 by the nationwide surveillance system.
    Zuo Z; Wang M; Cui H; Wang Y; Wu J; Qi J; Pan K; Sui D; Liu P; Xu A
    BMC Public Health; 2020 Aug; 20(1):1284. PubMed ID: 32843011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploration of influenza incidence prediction model based on meteorological factors in Lanzhou, China, 2014-2017.
    Du M; Zhu H; Yin X; Ke T; Gu Y; Li S; Li Y; Zheng G
    PLoS One; 2022; 17(12):e0277045. PubMed ID: 36520836
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epidemiological characteristics of tuberculosis incidence and its macro-influence factors in Chinese mainland during 2014-2021.
    Deng LL; Zhao F; Li ZW; Zhang WW; He GX; Ren X
    Infect Dis Poverty; 2024 May; 13(1):34. PubMed ID: 38773558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of meteorological parameters for forecasting scarlet fever morbidity in Tianjin, Northern China.
    Wang Y; Xu C; Ren J; Li Y; Wu W; Yao S
    Environ Sci Pollut Res Int; 2021 Feb; 28(6):7281-7294. PubMed ID: 33026621
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meteorological factors contribute to the risk of pulmonary tuberculosis: A multicenter study in eastern China.
    Li Z; Liu Q; Zhan M; Tao B; Wang J; Lu W
    Sci Total Environ; 2021 Nov; 793():148621. PubMed ID: 34328976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of meteorological factors on tuberculosis incidence in Southwest China from 2006 to 2015.
    Xiao Y; He L; Chen Y; Wang Q; Meng Q; Chang W; Xiong L; Yu Z
    Sci Rep; 2018 Jul; 8(1):10053. PubMed ID: 29968800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time series analyses based on the joint lagged effect analysis of pollution and meteorological factors of hemorrhagic fever with renal syndrome and the construction of prediction model.
    Chen Y; Hou W; Dong J
    PLoS Negl Trop Dis; 2023 Jul; 17(7):e0010806. PubMed ID: 37486953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Forecasting the incidence of tuberculosis in China using the seasonal auto-regressive integrated moving average (SARIMA) model.
    Mao Q; Zhang K; Yan W; Cheng C
    J Infect Public Health; 2018; 11(5):707-712. PubMed ID: 29730253
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.