These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
223 related articles for article (PubMed ID: 36271241)
1. Verification of gait analysis method fusing camera-based pose estimation and an IMU sensor in various gait conditions. Yamamoto M; Shimatani K; Ishige Y; Takemura H Sci Rep; 2022 Oct; 12(1):17719. PubMed ID: 36271241 [TBL] [Abstract][Full Text] [Related]
2. Accuracy of Temporo-Spatial and Lower Limb Joint Kinematics Parameters Using OpenPose for Various Gait Patterns With Orthosis. Yamamoto M; Shimatani K; Hasegawa M; Kurita Y; Ishige Y; Takemura H IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2666-2675. PubMed ID: 34914592 [TBL] [Abstract][Full Text] [Related]
3. Verification of validity of gait analysis systems during treadmill walking and running using human pose tracking algorithm. Ota M; Tateuchi H; Hashiguchi T; Ichihashi N Gait Posture; 2021 Mar; 85():290-297. PubMed ID: 33636458 [TBL] [Abstract][Full Text] [Related]
4. Real-time conversion of inertial measurement unit data to ankle joint angles using deep neural networks. Senanayake D; Halgamuge S; Ackland DC J Biomech; 2021 Aug; 125():110552. PubMed ID: 34237661 [TBL] [Abstract][Full Text] [Related]
5. Artificial Intelligence-Assisted motion capture for medical applications: a comparative study between markerless and passive marker motion capture. Takeda I; Yamada A; Onodera H Comput Methods Biomech Biomed Engin; 2021 Jun; 24(8):864-873. PubMed ID: 33290107 [TBL] [Abstract][Full Text] [Related]
6. Estimation of the Continuous Walking Angle of Knee and Ankle (Talocrural Joint, Subtalar Joint) of a Lower-Limb Exoskeleton Robot Using a Neural Network. Lee T; Kim I; Lee SH Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33923587 [TBL] [Abstract][Full Text] [Related]
7. Optimization of IMU Sensor Placement for the Measurement of Lower Limb Joint Kinematics. Niswander W; Wang W; Kontson K Sensors (Basel); 2020 Oct; 20(21):. PubMed ID: 33105876 [TBL] [Abstract][Full Text] [Related]
8. Development of an IMU based 2-segment foot model for an applicable medical gait analysis. Bauer L; Hamberger MA; Böcker W; Polzer H; Baumbach SF BMC Musculoskelet Disord; 2024 Jul; 25(1):606. PubMed ID: 39085824 [TBL] [Abstract][Full Text] [Related]
9. Kinematics and temporospatial parameters during gait from inertial motion capture in adults with and without HIV: a validity and reliability study. Berner K; Cockcroft J; Louw Q Biomed Eng Online; 2020 Jul; 19(1):57. PubMed ID: 32709239 [TBL] [Abstract][Full Text] [Related]
10. Integrating an LSTM framework for predicting ankle joint biomechanics during gait using inertial sensors. Xiang L; Gu Y; Gao Z; Yu P; Shim V; Wang A; Fernandez J Comput Biol Med; 2024 Mar; 170():108016. PubMed ID: 38277923 [TBL] [Abstract][Full Text] [Related]
11. On the reliability of single-camera markerless systems for overground gait monitoring. Boldo M; Di Marco R; Martini E; Nardon M; Bertucco M; Bombieri N Comput Biol Med; 2024 Mar; 171():108101. PubMed ID: 38340440 [TBL] [Abstract][Full Text] [Related]
12. Validity of Measurement for Trailing Limb Angle and Propulsion Force during Gait Using a Magnetic Inertial Measurement Unit. Miyazaki T; Kawada M; Nakai Y; Kiyama R; Yone K Biomed Res Int; 2019; 2019():8123467. PubMed ID: 31930138 [TBL] [Abstract][Full Text] [Related]
13. Comparing the accuracy of open-source pose estimation methods for measuring gait kinematics. Washabaugh EP; Shanmugam TA; Ranganathan R; Krishnan C Gait Posture; 2022 Sep; 97():188-195. PubMed ID: 35988434 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of Error-State Kalman Filter Method for Estimating Human Lower-Limb Kinematics during Various Walking Gaits. Potter MV; Cain SM; Ojeda LV; Gurchiek RD; McGinnis RS; Perkins NC Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366096 [TBL] [Abstract][Full Text] [Related]
15. Measurement of multi-segment foot joint angles during gait using a wearable system. Rouhani H; Favre J; Crevoisier X; Aminian K J Biomech Eng; 2012 Jun; 134(6):061006. PubMed ID: 22757503 [TBL] [Abstract][Full Text] [Related]
16. Validity and Sensitivity of an Inertial Measurement Unit-Driven Biomechanical Model of Motor Variability for Gait. Bailey CA; Uchida TK; Nantel J; Graham RB Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833766 [TBL] [Abstract][Full Text] [Related]
17. Concurrent assessment of gait kinematics using marker-based and markerless motion capture. Kanko RM; Laende EK; Davis EM; Selbie WS; Deluzio KJ J Biomech; 2021 Oct; 127():110665. PubMed ID: 34380101 [TBL] [Abstract][Full Text] [Related]
18. Estimation of Ankle Joint Power during Walking Using Two Inertial Sensors. Jiang X; Gholami M; Khoshnam M; Eng JJ; Menon C Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31234451 [TBL] [Abstract][Full Text] [Related]
19. Using Inertial Measurement Unit Sensor Single Axis Rotation Angles for Knee and Hip Flexion Angle Calculations During Gait. Oliveira N; Park J; Barrance P IEEE J Transl Eng Health Med; 2023; 11():80-86. PubMed ID: 36704243 [TBL] [Abstract][Full Text] [Related]
20. Pose2Sim: An End-to-End Workflow for 3D Markerless Sports Kinematics-Part 2: Accuracy. Pagnon D; Domalain M; Reveret L Sensors (Basel); 2022 Apr; 22(7):. PubMed ID: 35408326 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]