BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36271586)

  • 21. Cetuximab-Ag
    Hashemkhani M; Demirci G; Bayir A; Muti A; Sennaroglu A; Mohammad Hadi L; Yaghini E; Loizidou M; MacRobert AJ; Yagci Acar H
    Nanoscale; 2021 Sep; 13(35):14879-14899. PubMed ID: 34533177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cascade-amplifying synergistic effects of chemo-photodynamic therapy using ROS-responsive polymeric nanocarriers.
    Sun CY; Cao Z; Zhang XJ; Sun R; Yu CS; Yang X
    Theranostics; 2018; 8(11):2939-2953. PubMed ID: 29896295
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tumor acidity/redox hierarchical-activable nanoparticles for precise combination of X-ray-induced photodynamic therapy and hypoxia-activated chemotherapy.
    Zhang B; Xue R; Lyu J; Gao A; Sun C
    J Mater Chem B; 2022 May; 10(20):3849-3860. PubMed ID: 35470367
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-Delivered and Self-Monitored Chemo-Photodynamic Nanoparticles with Light-Triggered Synergistic Antitumor Therapies by Downregulation of HIF-1α and Depletion of GSH.
    Zhang Z; Wang R; Huang X; Luo R; Xue J; Gao J; Liu W; Liu F; Feng F; Qu W
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5680-5694. PubMed ID: 31944660
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nano-delivery vehicle based on chlorin E6, photodynamic therapy, doxorubicin chemotherapy provides targeted treatment of HER-2 negative, ανβ3-positive breast cancer.
    He Z; Jiang H; Zhang X; Zhang H; Cui Z; Sun L; Li H; Qian J; Ma J; Huang J
    Pharmacol Res; 2020 Oct; 160():105184. PubMed ID: 32946931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. X-ray induced singlet oxygen generation by nanoparticle-photosensitizer conjugates for photodynamic therapy: determination of singlet oxygen quantum yield.
    Clement S; Deng W; Camilleri E; Wilson BC; Goldys EM
    Sci Rep; 2016 Jan; 6():19954. PubMed ID: 26818819
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Possible Enhancement of Photodynamic Therapy (PDT) Colorectal Cancer Treatment when Combined with Cannabidiol.
    Nkune NW; Kruger CA; Abrahamse H
    Anticancer Agents Med Chem; 2021; 21(2):137-148. PubMed ID: 32294046
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Application of Mitochondrially Targeted Nanoconstructs to Neoadjuvant X-ray-Induced Photodynamic Therapy for Rectal Cancer.
    Deng W; McKelvey KJ; Guller A; Fayzullin A; Campbell JM; Clement S; Habibalahi A; Wargocka Z; Liang L; Shen C; Howell VM; Engel AF; Goldys EM
    ACS Cent Sci; 2020 May; 6(5):715-726. PubMed ID: 32490188
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Verteporfin-based photodynamic therapy overcomes gemcitabine insensitivity in a panel of pancreatic cancer cell lines.
    Celli JP; Solban N; Liang A; Pereira SP; Hasan T
    Lasers Surg Med; 2011 Sep; 43(7):565-74. PubMed ID: 22057484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ROS-Activatable siRNA-Engineered Polyplex for NIR-Triggered Synergistic Cancer Treatment.
    Zhang M; Weng Y; Cao Z; Guo S; Hu B; Lu M; Guo W; Yang T; Li C; Yang X; Huang Y
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32289-32300. PubMed ID: 32584027
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeting tissue factor on tumour cells and angiogenic vascular endothelial cells by factor VII-targeted verteporfin photodynamic therapy for breast cancer in vitro and in vivo in mice.
    Hu Z; Rao B; Chen S; Duanmu J
    BMC Cancer; 2010 May; 10():235. PubMed ID: 20504328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intracellular glutathione levels affect the outcomes of verteporfin-mediated photodynamic therapy in esophageal cancer cells.
    Edano M; Kanda T; Tarumoto R; Hamamoto W; Hasegawa T; Mae Y; Onoyama T; Takata T; Sugihara T; Isomoto H
    Photodiagnosis Photodyn Ther; 2022 Dec; 40():103090. PubMed ID: 36031142
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chlorin e6 conjugated silica nanoparticles for targeted and effective photodynamic therapy.
    Bharathiraja S; Moorthy MS; Manivasagan P; Seo H; Lee KD; Oh J
    Photodiagnosis Photodyn Ther; 2017 Sep; 19():212-220. PubMed ID: 28583295
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioactivatable reactive oxygen species-sensitive nanoparticulate system for chemo-photodynamic therapy.
    Kim Y; Uthaman S; Pillarisetti S; Noh K; Huh KM; Park IK
    Acta Biomater; 2020 May; 108():273-284. PubMed ID: 32205212
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amphiphilic block polymer-based self-assembly of high payload nanoparticles for efficient combinatorial chemo-photodynamic therapy.
    Ma Q; Zhao Y; Guan Q; Zhao Y; Zhang H; Ding Z; Wang Q; Wu Y; Liu M; Han J
    Drug Deliv; 2020 Nov; 27(1):1656-1666. PubMed ID: 33233958
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In-Vitro Use of Verteporfin for Photodynamic Therapy in Glioblastoma.
    Jeising S; Geerling G; Guthoff R; Hänggi D; Sabel M; Rapp M; Nickel AC
    Photodiagnosis Photodyn Ther; 2022 Dec; 40():103049. PubMed ID: 35932958
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxygen-producing catalase-based prodrug nanoparticles overcoming resistance in hypoxia-mediated chemo-photodynamic therapy.
    Cheng X; He L; Xu J; Fang Q; Yang L; Xue Y; Wang X; Tang R
    Acta Biomater; 2020 Aug; 112():234-249. PubMed ID: 32502633
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Carbon-Doped TiO
    Yang CC; Tsai MH; Li KY; Hou CH; Lin FH
    Int J Mol Sci; 2019 Apr; 20(9):. PubMed ID: 31035468
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scintillator-Based Nanohybrids with Sacrificial Electron Prodrug for Enhanced X-ray-Induced Photodynamic Therapy.
    Wang H; Lv B; Tang Z; Zhang M; Ge W; Liu Y; He X; Zhao K; Zheng X; He M; Bu W
    Nano Lett; 2018 Sep; 18(9):5768-5774. PubMed ID: 30052464
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanomedicines for Reactive Oxygen Species Mediated Approach: An Emerging Paradigm for Cancer Treatment.
    Kwon S; Ko H; You DG; Kataoka K; Park JH
    Acc Chem Res; 2019 Jul; 52(7):1771-1782. PubMed ID: 31241894
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.