These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 36271696)

  • 1. A direct enzymatic evaluation platform (DEEP) to fine-tuning pyridoxal 5'-phosphate-dependent proteins for cadaverine production.
    Xue C; Ng IS
    Biotechnol Bioeng; 2023 Jan; 120(1):272-283. PubMed ID: 36271696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of enzymatic quality and quantity using pyridoxal 5'-phosphate (PLP) regeneration system as a decoy in Escherichia coli.
    Xue C; Ng IS
    Int J Biol Macromol; 2023 Apr; 235():123814. PubMed ID: 36841388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering a pyridoxal 5'-phosphate supply for cadaverine production by using Escherichia coli whole-cell biocatalysis.
    Ma W; Cao W; Zhang B; Chen K; Liu Q; Li Y; Ouyang P
    Sci Rep; 2015 Oct; 5():15630. PubMed ID: 26490441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransformation of pyridoxal 5'-phosphate from pyridoxal by pyridoxal kinase (pdxY) to support cadaverine production in Escherichia coli.
    Kim JH; Kim J; Kim HJ; Sathiyanarayanan G; Bhatia SK; Song HS; Choi YK; Kim YG; Park K; Yang YH
    Enzyme Microb Technol; 2017 Sep; 104():9-15. PubMed ID: 28648182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fine-Tuning Pyridoxal 5'-Phosphate Synthesis in
    Liu C; Gao C; Song L; Li X; Chen X; Wu J; Song W; Wei W; Liu L
    ACS Synth Biol; 2024 Jun; 13(6):1820-1830. PubMed ID: 38767944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic manipulation through CRISPRi and gene deletion to enhance cadaverine production in Escherichia coli.
    Ting WW; Ng IS
    J Biosci Bioeng; 2020 Dec; 130(6):553-562. PubMed ID: 32792329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimization of Direct Lysine Decarboxylase Biotransformation for Cadaverine Production with Whole-Cell Biocatalysts at High Lysine Concentration.
    Kim HJ; Kim YH; Shin JH; Bhatia SK; Sathiyanarayanan G; Seo HM; Choi KY; Yang YH; Park K
    J Microbiol Biotechnol; 2015 Jul; 25(7):1108-13. PubMed ID: 25674800
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improvement of cadaverine production in whole cell system with baker's yeast for cofactor regeneration.
    Han YH; Kim HJ; Choi TR; Song HS; Lee SM; Park SL; Lee HS; Cho JY; Bhatia SK; Gurav R; Park K; Yang YH
    Bioprocess Biosyst Eng; 2021 Apr; 44(4):891-899. PubMed ID: 33486578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hidden resources in the
    Kim J; Flood JJ; Kristofich MR; Gidfar C; Morgenthaler AB; Fuhrer T; Sauer U; Snyder D; Cooper VS; Ebmeier CC; Old WM; Copley SD
    Proc Natl Acad Sci U S A; 2019 Nov; 116(48):24164-24173. PubMed ID: 31712440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced production of cadaverine by the addition of hexadecyltrimethylammonium bromide to whole cell system with regeneration of pyridoxal-5'-phosphate and ATP.
    Moon YM; Yang SY; Choi TR; Jung HR; Song HS; Han YH; Park HY; Bhatia SK; Gurav R; Park K; Kim JS; Yang YH
    Enzyme Microb Technol; 2019 Aug; 127():58-64. PubMed ID: 31088617
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyridoxal Reductase, PdxI, Is Critical for Salvage of Pyridoxal in Escherichia coli.
    Ito T; Downs DM
    J Bacteriol; 2020 May; 202(12):. PubMed ID: 32253339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated gene engineering synergistically improved substrate-product transport, cofactor generation and gene translation for cadaverine biosynthesis in E. coli.
    Osire T; Yang T; Xu M; Zhang X; Long M; Ngon NKA; Rao Z
    Int J Biol Macromol; 2021 Feb; 169():8-17. PubMed ID: 33301846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of YbhA as the pyridoxal 5'-phosphate (PLP) phosphatase in Escherichia coli: Importance of PLP homeostasis on the bacterial growth.
    Sugimoto R; Saito N; Shimada T; Tanaka K
    J Gen Appl Microbiol; 2018 Jan; 63(6):362-368. PubMed ID: 29187681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lysine Decarboxylase with an Enhanced Affinity for Pyridoxal 5-Phosphate by Disulfide Bond-Mediated Spatial Reconstitution.
    Sagong HY; Kim KJ
    PLoS One; 2017; 12(1):e0170163. PubMed ID: 28095457
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PdxH proteins of mycobacteria are typical members of the classical pyridoxine/pyridoxamine 5'-phosphate oxidase family.
    Ankisettypalli K; Cheng JJ; Baker EN; Bashiri G
    FEBS Lett; 2016 Feb; 590(4):453-60. PubMed ID: 26823273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Knowns and Unknowns of Vitamin B
    Tramonti A; Nardella C; di Salvo ML; Barile A; D'Alessio F; de Crécy-Lagard V; Contestabile R
    EcoSal Plus; 2021 Apr; 9(2):. PubMed ID: 33787481
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulating the biosynthesis of pyridoxal 5'-phosphate with riboswitch to enhance L-DOPA production by Escherichia coli whole-cell biotransformation.
    Han H; Xu B; Zeng W; Zhou J
    J Biotechnol; 2020 Sep; 321():68-77. PubMed ID: 32445779
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineered production of pyridoxal 5'-phosphate in
    He M; Ma J; Chen Q; Zhang Q; Yu P
    Prep Biochem Biotechnol; 2022; 52(5):498-507. PubMed ID: 34431758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering synthetic microbial consortium for cadaverine biosynthesis from glycerol.
    Liu S; Mi J; Song K; Qi H; Zhang L
    Biotechnol Lett; 2022 Dec; 44(12):1389-1400. PubMed ID: 36203106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of YggS in Vitamin B
    Vu HN; Ito T; Downs DM
    J Bacteriol; 2020 Oct; 202(22):. PubMed ID: 32900833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.