These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 36271789)
1. Molecular basis of cyclic tetra-oligoadenylate processing by small standalone CRISPR-Cas ring nucleases. Molina R; Garcia-Martin R; López-Méndez B; Jensen ALG; Ciges-Tomas JR; Marchena-Hurtado J; Stella S; Montoya G Nucleic Acids Res; 2022 Oct; 50(19):11199-11213. PubMed ID: 36271789 [TBL] [Abstract][Full Text] [Related]
2. Structural basis of cyclic oligoadenylate degradation by ancillary Type III CRISPR-Cas ring nucleases. Molina R; Jensen ALG; Marchena-Hurtado J; López-Méndez B; Stella S; Montoya G Nucleic Acids Res; 2021 Dec; 49(21):12577-12590. PubMed ID: 34850143 [TBL] [Abstract][Full Text] [Related]
3. Csx3 is a cyclic oligonucleotide phosphodiesterase associated with type III CRISPR-Cas that degrades the second messenger cA Brown S; Gauvin CC; Charbonneau AA; Burman N; Lawrence CM J Biol Chem; 2020 Oct; 295(44):14963-14972. PubMed ID: 32826317 [TBL] [Abstract][Full Text] [Related]
4. Tetramerisation of the CRISPR ring nuclease Crn3/Csx3 facilitates cyclic oligoadenylate cleavage. Athukoralage JS; McQuarrie S; Grüschow S; Graham S; Gloster TM; White MF Elife; 2020 Jun; 9():. PubMed ID: 32597755 [TBL] [Abstract][Full Text] [Related]
5. Activation and self-inactivation mechanisms of the cyclic oligoadenylate-dependent CRISPR ribonuclease Csm6. Garcia-Doval C; Schwede F; Berk C; Rostøl JT; Niewoehner O; Tejero O; Hall J; Marraffini LA; Jinek M Nat Commun; 2020 Mar; 11(1):1596. PubMed ID: 32221291 [TBL] [Abstract][Full Text] [Related]
6. Structural basis of cyclic oligoadenylate binding to the transcription factor Csa3 outlines cross talk between type III and type I CRISPR systems. Xia P; Dutta A; Gupta K; Batish M; Parashar V J Biol Chem; 2022 Feb; 298(2):101591. PubMed ID: 35038453 [TBL] [Abstract][Full Text] [Related]
7. CRISPR-Cas III-A Csm6 CARF Domain Is a Ring Nuclease Triggering Stepwise cA Jia N; Jones R; Yang G; Ouerfelli O; Patel DJ Mol Cell; 2019 Sep; 75(5):944-956.e6. PubMed ID: 31326273 [TBL] [Abstract][Full Text] [Related]
8. Molecular basis of stepwise cyclic tetra-adenylate cleavage by the type III CRISPR ring nuclease Crn1/Sso2081. Du L; Zhang D; Luo Z; Lin Z Nucleic Acids Res; 2023 Mar; 51(5):2485-2495. PubMed ID: 36807980 [TBL] [Abstract][Full Text] [Related]
9. Structure of Csx1-cOA Molina R; Stella S; Feng M; Sofos N; Jauniskis V; Pozdnyakova I; López-Méndez B; She Q; Montoya G Nat Commun; 2019 Sep; 10(1):4302. PubMed ID: 31541109 [TBL] [Abstract][Full Text] [Related]
10. A Type III-B Cmr effector complex catalyzes the synthesis of cyclic oligoadenylate second messengers by cooperative substrate binding. Han W; Stella S; Zhang Y; Guo T; Sulek K; Peng-Lundgren L; Montoya G; She Q Nucleic Acids Res; 2018 Nov; 46(19):10319-10330. PubMed ID: 30239876 [TBL] [Abstract][Full Text] [Related]
11. An anti-CRISPR viral ring nuclease subverts type III CRISPR immunity. Athukoralage JS; McMahon SA; Zhang C; Grüschow S; Graham S; Krupovic M; Whitaker RJ; Gloster TM; White MF Nature; 2020 Jan; 577(7791):572-575. PubMed ID: 31942067 [TBL] [Abstract][Full Text] [Related]
12. Structural insight into the Csx1-Crn2 fusion self-limiting ribonuclease of type III CRISPR system. Zhang D; Du L; Gao H; Yuan C; Lin Z Nucleic Acids Res; 2024 Aug; 52(14):8419-8430. PubMed ID: 38967023 [TBL] [Abstract][Full Text] [Related]
13. A Type III CRISPR Ancillary Ribonuclease Degrades Its Cyclic Oligoadenylate Activator. Athukoralage JS; Graham S; Grüschow S; Rouillon C; White MF J Mol Biol; 2019 Jul; 431(15):2894-2899. PubMed ID: 31071326 [TBL] [Abstract][Full Text] [Related]
14. Type III CRISPR-Cas: beyond the Cas10 effector complex. Stella G; Marraffini L Trends Biochem Sci; 2024 Jan; 49(1):28-37. PubMed ID: 37949766 [TBL] [Abstract][Full Text] [Related]
15. Ring nucleases deactivate type III CRISPR ribonucleases by degrading cyclic oligoadenylate. Athukoralage JS; Rouillon C; Graham S; Grüschow S; White MF Nature; 2018 Oct; 562(7726):277-280. PubMed ID: 30232454 [TBL] [Abstract][Full Text] [Related]
16. Investigation of the cyclic oligoadenylate signaling pathway of type III CRISPR systems. Rouillon C; Athukoralage JS; Graham S; Grüschow S; White MF Methods Enzymol; 2019; 616():191-218. PubMed ID: 30691643 [TBL] [Abstract][Full Text] [Related]
17. Cyclic Tetra-Adenylate (cA Charbonneau AA; Eckert DM; Gauvin CC; Lintner NG; Lawrence CM Biomolecules; 2021 Dec; 11(12):. PubMed ID: 34944496 [TBL] [Abstract][Full Text] [Related]
18. Substrate selectivity and catalytic activation of the type III CRISPR ancillary nuclease Can2. Jungfer K; Sigg A; Jinek M Nucleic Acids Res; 2024 Jan; 52(1):462-473. PubMed ID: 38033326 [TBL] [Abstract][Full Text] [Related]
19. Regulation of cyclic oligoadenylate synthesis by the Nasef M; Muffly MC; Beckman AB; Rowe SJ; Walker FC; Hatoum-Aslan A; Dunkle JA RNA; 2019 Aug; 25(8):948-962. PubMed ID: 31076459 [TBL] [Abstract][Full Text] [Related]
20. The SAVED domain of the type III CRISPR protease CalpL is a ring nuclease. Binder SC; Schneberger N; Schmitz M; Engeser M; Geyer M; Rouillon C; Hagelueken G Nucleic Acids Res; 2024 Sep; 52(17):10520-10532. PubMed ID: 39166476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]