These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36271789)

  • 21. The Card1 nuclease provides defence during type III CRISPR immunity.
    Rostøl JT; Xie W; Kuryavyi V; Maguin P; Kao K; Froom R; Patel DJ; Marraffini LA
    Nature; 2021 Feb; 590(7847):624-629. PubMed ID: 33461211
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enzymatic properties of CARF-domain proteins in
    Ding J; Schuergers N; Baehre H; Wilde A
    Front Microbiol; 2022; 13():1046388. PubMed ID: 36419420
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR antiphage defence mediated by the cyclic nucleotide-binding membrane protein Csx23.
    Grüschow S; McQuarrie S; Ackermann K; McMahon S; Bode BE; Gloster TM; White MF
    Nucleic Acids Res; 2024 Apr; 52(6):2761-2775. PubMed ID: 38471818
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular mechanism of allosteric activation of the CRISPR ribonuclease Csm6 by cyclic tetra-adenylate.
    Du L; Zhu Q; Lin Z
    EMBO J; 2024 Jan; 43(2):304-315. PubMed ID: 38177499
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Second Messenger cA
    Jia N; Jones R; Sukenick G; Patel DJ
    Mol Cell; 2019 Sep; 75(5):933-943.e6. PubMed ID: 31326272
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fuse to defuse: a self-limiting ribonuclease-ring nuclease fusion for type III CRISPR defence.
    Samolygo A; Athukoralage JS; Graham S; White MF
    Nucleic Acids Res; 2020 Jun; 48(11):6149-6156. PubMed ID: 32347937
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems.
    Kazlauskiene M; Kostiuk G; Venclovas Č; Tamulaitis G; Siksnys V
    Science; 2017 Aug; 357(6351):605-609. PubMed ID: 28663439
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Discovery of Oligonucleotide Signaling Mediated by CRISPR-Associated Polymerases Solves Two Puzzles but Leaves an Enigma.
    Koonin EV; Makarova KS
    ACS Chem Biol; 2018 Feb; 13(2):309-312. PubMed ID: 28937734
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SCOPE enables type III CRISPR-Cas diagnostics using flexible targeting and stringent CARF ribonuclease activation.
    Steens JA; Zhu Y; Taylor DW; Bravo JPK; Prinsen SHP; Schoen CD; Keijser BJF; Ossendrijver M; Hofstra LM; Brouns SJJ; Shinkai A; van der Oost J; Staals RHJ
    Nat Commun; 2021 Aug; 12(1):5033. PubMed ID: 34413302
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyclic oligoadenylate signalling and regulation by ring nucleases during type III CRISPR defence.
    Athukoralage JS; White MF
    RNA; 2021 May; 27(8):855-67. PubMed ID: 33986148
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure and mechanism of a Type III CRISPR defence DNA nuclease activated by cyclic oligoadenylate.
    McMahon SA; Zhu W; Graham S; Rambo R; White MF; Gloster TM
    Nat Commun; 2020 Jan; 11(1):500. PubMed ID: 31980625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Type III CRISPR-Cas systems produce cyclic oligoadenylate second messengers.
    Niewoehner O; Garcia-Doval C; Rostøl JT; Berk C; Schwede F; Bigler L; Hall J; Marraffini LA; Jinek M
    Nature; 2017 Aug; 548(7669):543-548. PubMed ID: 28722012
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular basis for cA6 synthesis by a type III-A CRISPR-Cas enzyme and its conversion to cA4 production.
    Goswami HN; Ahmadizadeh F; Wang B; Addo-Yobo D; Zhao Y; Whittington AC; He H; Terns MP; Li H
    Nucleic Acids Res; 2024 Sep; 52(17):10619-10629. PubMed ID: 38989619
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ribosomal stalk-captured CARF-RelE ribonuclease inhibits translation following CRISPR signaling.
    Mogila I; Tamulaitiene G; Keda K; Timinskas A; Ruksenaite A; Sasnauskas G; Venclovas Č; Siksnys V; Tamulaitis G
    Science; 2023 Dec; 382(6674):1036-1041. PubMed ID: 38033086
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The CRISPR ancillary effector Can2 is a dual-specificity nuclease potentiating type III CRISPR defence.
    Zhu W; McQuarrie S; Grüschow S; McMahon SA; Graham S; Gloster TM; White MF
    Nucleic Acids Res; 2021 Mar; 49(5):2777-2789. PubMed ID: 33590098
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The diverse arsenal of type III CRISPR-Cas-associated CARF and SAVED effectors.
    Steens JA; Salazar CRP; Staals RHJ
    Biochem Soc Trans; 2022 Oct; 50(5):1353-1364. PubMed ID: 36282000
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The CRISPR effector Cam1 mediates membrane depolarization for phage defence.
    Baca CF; Yu Y; Rostøl JT; Majumder P; Patel DJ; Marraffini LA
    Nature; 2024 Jan; 625(7996):797-804. PubMed ID: 38200316
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The dynamic interplay of host and viral enzymes in type III CRISPR-mediated cyclic nucleotide signalling.
    Athukoralage JS; Graham S; Rouillon C; Grüschow S; Czekster CM; White MF
    Elife; 2020 Apr; 9():. PubMed ID: 32338598
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cmr3 regulates the suppression on cyclic oligoadenylate synthesis by tag complementarity in a Type III-B CRISPR-Cas system.
    Guo T; Zheng F; Zeng Z; Yang Y; Li Q; She Q; Han W
    RNA Biol; 2019 Oct; 16(10):1513-1520. PubMed ID: 31298604
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Antiviral type III CRISPR signalling via conjugation of ATP and SAM.
    Chi H; Hoikkala V; Grüschow S; Graham S; Shirran S; White MF
    Nature; 2023 Oct; 622(7984):826-833. PubMed ID: 37853119
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.