These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 36271868)

  • 1. DeepPerVar: a multi-modal deep learning framework for functional interpretation of genetic variants in personal genome.
    Wang Y; Chen L
    Bioinformatics; 2022 Dec; 38(24):5340-5351. PubMed ID: 36271868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting deep transfer learning for the prediction of functional non-coding variants using genomic sequence.
    Chen L; Wang Y; Zhao F
    Bioinformatics; 2022 Jun; 38(12):3164-3172. PubMed ID: 35389435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying functional impact of non-coding variants with multi-task Bayesian neural network.
    Xu C; Liu Q; Zhou J; Xie M; Feng J; Jiang T
    Bioinformatics; 2020 Mar; 36(5):1397-1404. PubMed ID: 31693090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining artificial intelligence: deep learning with Hi-C data to predict the functional effects of non-coding variants.
    Meng XH; Xiao HM; Deng HW
    Bioinformatics; 2021 Jun; 37(10):1339-1344. PubMed ID: 33196774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved methods for multi-trait fine mapping of pleiotropic risk loci.
    Kichaev G; Roytman M; Johnson R; Eskin E; Lindström S; Kraft P; Pasaniuc B
    Bioinformatics; 2017 Jan; 33(2):248-255. PubMed ID: 27663501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Haplotype function score improves biological interpretation and cross-ancestry polygenic prediction of human complex traits.
    Song W; Shi Y; Lin GN
    Elife; 2024 Apr; 12():. PubMed ID: 38639992
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TVAR: assessing tissue-specific functional effects of non-coding variants with deep learning.
    Yang H; Chen R; Wang Q; Wei Q; Ji Y; Zhong X; Li B
    Bioinformatics; 2022 Oct; 38(20):4697-4704. PubMed ID: 36063453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Openness weighted association studies: leveraging personal genome information to prioritize non-coding variants.
    Song S; Shan N; Wang G; Yan X; Liu JS; Hou L
    Bioinformatics; 2021 Dec; 37(24):4737-4743. PubMed ID: 34260700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying the mapping precision of genome-wide association studies using whole-genome sequencing data.
    Wu Y; Zheng Z; Visscher PM; Yang J
    Genome Biol; 2017 May; 18(1):86. PubMed ID: 28506277
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrate multiple traits to detect novel trait-gene association using GWAS summary data with an adaptive test approach.
    Guo B; Wu B
    Bioinformatics; 2019 Jul; 35(13):2251-2257. PubMed ID: 30476000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Bayesian framework for multiple trait colocalization from summary association statistics.
    Giambartolomei C; Zhenli Liu J; Zhang W; Hauberg M; Shi H; Boocock J; Pickrell J; Jaffe AE; ; Pasaniuc B; Roussos P
    Bioinformatics; 2018 Aug; 34(15):2538-2545. PubMed ID: 29579179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning predicts DNA methylation regulatory variants in the human brain and elucidates the genetics of psychiatric disorders.
    Zhou J; Chen Q; Braun PR; Perzel Mandell KA; Jaffe AE; Tan HY; Hyde TM; Kleinman JE; Potash JB; Shinozaki G; Weinberger DR; Han S
    Proc Natl Acad Sci U S A; 2022 Aug; 119(34):e2206069119. PubMed ID: 35969790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leveraging allelic imbalance to refine fine-mapping for eQTL studies.
    Zou J; Hormozdiari F; Jew B; Castel SE; Lappalainen T; Ernst J; Sul JH; Eskin E
    PLoS Genet; 2019 Dec; 15(12):e1008481. PubMed ID: 31834882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning predicts the impact of regulatory variants on cell-type-specific enhancers in the brain.
    Zheng A; Shen Z; Glass CK; Gymrek M
    Bioinform Adv; 2023; 3(1):vbad002. PubMed ID: 36726730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting target genes of non-coding regulatory variants with IRT.
    Wu Z; Ioannidis NM; Zou J
    Bioinformatics; 2020 Aug; 36(16):4440-4448. PubMed ID: 32330225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. TreeMap: a structured approach to fine mapping of eQTL variants.
    Liu L; Chandrashekar P; Zeng B; Sanderford MD; Kumar S; Gibson G
    Bioinformatics; 2021 May; 37(8):1125-1134. PubMed ID: 33135051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ezQTL: A Web Platform for Interactive Visualization and Colocalization of QTLs and GWAS Loci.
    Zhang T; Klein A; Sang J; Choi J; Brown KM
    Genomics Proteomics Bioinformatics; 2022 Jun; 20(3):541-548. PubMed ID: 35643189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interpreting coronary artery disease GWAS results: A functional genomics approach assessing biological significance.
    Hartmann K; Seweryn M; Sadee W
    PLoS One; 2022; 17(2):e0244904. PubMed ID: 35192625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. postGWAS: A web server for deciphering the causality post the genome-wide association studies.
    Wang T; Yan Z; Zhang Y; Lou Z; Zheng X; Mai D; Wang Y; Shang X; Xiao B; Peng J; Chen J
    Comput Biol Med; 2024 Mar; 171():108108. PubMed ID: 38359659
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Weighting sequence variants based on their annotation increases the power of genome-wide association studies in dairy cattle.
    Cai Z; Guldbrandtsen B; Lund MS; Sahana G
    Genet Sel Evol; 2019 May; 51(1):20. PubMed ID: 31077144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.