These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 36271923)

  • 1. Heat tracer-based sap flow methods for tree transpiration measurements: a mini review and bibliometric analysis.
    Wang J; Turner NC; Feng H; Dyck M; He H
    J Exp Bot; 2023 Feb; 74(3):723-742. PubMed ID: 36271923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating sap flux densities in date palm trees using the heat dissipation method and weighing lysimeters.
    Sperling O; Shapira O; Cohen S; Tripler E; Schwartz A; Lazarovitch N
    Tree Physiol; 2012 Sep; 32(9):1171-8. PubMed ID: 22887479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sap flow monitoring of two Australian native tree species in a suburban setting: Implications for tree selection and management.
    Sun X; Li J; Cameron D; Moore G
    Plant Sci; 2022 Apr; 317():111194. PubMed ID: 35193743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A statistical method for estimating wood thermal diffusivity and probe geometry using in situ heat response curves from sap flow measurements.
    Chen X; Miller GR; Rubin Y; Baldocchi DD
    Tree Physiol; 2012 Dec; 32(12):1458-70. PubMed ID: 23135737
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Potential errors in measuring tree transpiration based on thermal dissipation method].
    Liu QX; Meng P; Zhang JS; Gao J; Huang H; Sun SJ; Lu S
    Ying Yong Sheng Tai Xue Bao; 2011 Dec; 22(12):3343-50. PubMed ID: 22384607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Application of three heat pulse technique-based methods to determine the stem sap flow].
    Wang S; Fan J
    Ying Yong Sheng Tai Xue Bao; 2015 Aug; 26(8):2244-52. PubMed ID: 26685585
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of heat transfer in sapwood and implications for sap flux density measurements using thermal dissipation probes.
    Wullschleger SD; Childs KW; King AW; Hanson PJ
    Tree Physiol; 2011 Jun; 31(6):669-79. PubMed ID: 21743059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of stem temperature changes on heat pulse sap flux density measurements.
    Vandegehuchte MW; Burgess SS; Downey A; Steppe K
    Tree Physiol; 2015 Apr; 35(4):346-53. PubMed ID: 25145698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Adaptability of Granier empirical formula in sap flow measurement of Populus tomentosa based on whole tree weighing method].
    Ma YJ; Wu PF; Wang X; Zhang JS; Yin CJ; Ma CM
    Ying Yong Sheng Tai Xue Bao; 2020 May; 31(5):1518-1524. PubMed ID: 32530229
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing dual heat pulse methods with Péclet's number as universal switch to measure sap flow across a wide range.
    Ma Y; Ren R; Fu H; Si B; Kinar NJ; Liu G; Steppe K
    Tree Physiol; 2023 Sep; 43(9):1691-1703. PubMed ID: 37216651
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of conduction versus convection in heat pulse sap flow methods.
    Forster MA
    Tree Physiol; 2020 May; 40(5):683-694. PubMed ID: 32031660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A double-ratio method to measure fast, slow and reverse sap flows.
    Deng Z; Vice HK; Gilbert ME; Adams MA; Buckley TN
    Tree Physiol; 2021 Dec; 41(12):2438-2453. PubMed ID: 34100073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Azimuthal and radial variations in sap flux density and effects on stand-scale transpiration estimates in a Japanese cedar forest.
    Shinohara Y; Tsuruta K; Ogura A; Noto F; Komatsu H; Otsuki K; Maruyama T
    Tree Physiol; 2013 May; 33(5):550-8. PubMed ID: 23640874
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood.
    James SA; Clearwater MJ; Meinzer FC; Goldstein G
    Tree Physiol; 2002 Mar; 22(4):277-83. PubMed ID: 11874724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SAPFLUXNET: towards a global database of sap flow measurements.
    Poyatos R; Granda V; Molowny-Horas R; Mencuccini M; Steppe K; Martínez-Vilalta J
    Tree Physiol; 2016 Dec; 36(12):1449-1455. PubMed ID: 27885171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What the towers don't see at night: nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California.
    Fisher JB; Baldocchi DD; Misson L; Dawson TE; Goldstein AH
    Tree Physiol; 2007 Apr; 27(4):597-610. PubMed ID: 17242001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants.
    Burgess SS; Adams MA; Turner NC; Beverly CR; Ong CK; Khan AA; Bleby TM
    Tree Physiol; 2001 Jun; 21(9):589-98. PubMed ID: 11390303
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tree water storage and its diurnal dynamics related to sap flow and changes in stem volume in old-growth Douglas-fir trees.
    Cermák J; Kucera J; Bauerle WL; Phillips N; Hinckley TM
    Tree Physiol; 2007 Feb; 27(2):181-98. PubMed ID: 17241961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Testing of a custom, portable drill press to minimize probe misalignment in sap flow sensors.
    Beslity J; Shaw SB
    Tree Physiol; 2023 Aug; 43(8):1467-1477. PubMed ID: 37084133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of heater wattage on sap flux density estimates using an improved tree-cut experiment.
    Gutierrez Lopez J; Licata J; Pypker T; Asbjornsen H
    Tree Physiol; 2019 Apr; 39(4):679-693. PubMed ID: 30597089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.