BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36272048)

  • 1. Temporal frequency dependence of the polarity inversion between upper and lower visual field in the pattern-onset steady-state visual evoked potential.
    Kessler R; Heinrich SP
    Doc Ophthalmol; 2023 Feb; 146(1):53-63. PubMed ID: 36272048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of hemifield stimulation on simultaneous steady-state pattern reversal electroretinogram and visual evoked response.
    Katsumi O; Tetsuka S; Mehta MC; Tetsuka H; Hirose T
    Ophthalmic Res; 1993; 25(2):119-27. PubMed ID: 8321516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. V1 is not uniquely identified by polarity reversals of responses to upper and lower visual field stimuli.
    Ales JM; Yates JL; Norcia AM
    Neuroimage; 2010 Oct; 52(4):1401-9. PubMed ID: 20488247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface distribution of steady-state cortical potentials evoked by visual half-field stimulation.
    Yanashima K
    Graefes Arch Clin Exp Ophthalmol; 1982; 218(3):118-23. PubMed ID: 7095437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Amplitude asymmetry of hemifield pattern reversal VEPs in healthy subjects.
    Abe Y; Kuroiwa Y
    Electroencephalogr Clin Neurophysiol; 1990; 77(2):81-5. PubMed ID: 1690119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Transient and steady-state electroretinograms and visual evoked potentials to pattern and uniform-field stimulation in humans].
    Nakayama M
    Fukuoka Igaku Zasshi; 1994 Jul; 85(7):225-34. PubMed ID: 8070753
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visual evoked potentials generator model derived from different spatial frequency stimuli of visual field regions and magnetic resonance imaging coordinates of V1, V2, V3 areas in man.
    Onofrj M; Fulgente T; Thomas A; Curatola L; Peresson M; Lopez L; Locatelli T; Martinelli V; Comi G
    Int J Neurosci; 1995 Dec; 83(3-4):213-39. PubMed ID: 8869429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On determining the intracranial sources of visual evoked potentials from scalp topography: a reply to Kelly et al. (this issue).
    Ales JM; Yates JL; Norcia AM
    Neuroimage; 2013 Jan; 64():703-11. PubMed ID: 22982584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifocal topographic visual evoked potential: improving objective detection of local visual field defects.
    Klistorner AI; Graham SL; Grigg JR; Billson FA
    Invest Ophthalmol Vis Sci; 1998 May; 39(6):937-50. PubMed ID: 9579473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multifocal pattern VEP perimetry: analysis of sectoral waveforms.
    Klistorner AI; Graham SL
    Doc Ophthalmol; 1999; 98(2):183-96. PubMed ID: 10947003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steady-state multifocal visual evoked potential (ssmfVEP) using dartboard stimulation as a possible tool for objective visual field assessment.
    Horn FK; Selle F; Hohberger B; Kremers J
    Graefes Arch Clin Exp Ophthalmol; 2016 Feb; 254(2):259-68. PubMed ID: 26553198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conventional pattern-reversal VEPs are not equivalent to summed multifocal VEPs.
    Fortune B; Hood DC
    Invest Ophthalmol Vis Sci; 2003 Mar; 44(3):1364-75. PubMed ID: 12601070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A short latency cortical component of the foveal VEP is revealed by hemifield stimulation.
    Bodis-Wollner I; Brannan JR; Nicoll J; Frkovic S; Mylin LH
    Electroencephalogr Clin Neurophysiol; 1992; 84(3):201-8. PubMed ID: 1375879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the performance of six stimulus paradigms in visual acuity assessment based on steady-state visual evoked potentials.
    Zheng X; Xu G; Wu Y; Wang Y; Du C; Wu Y; Zhang S; Han C
    Doc Ophthalmol; 2020 Dec; 141(3):237-251. PubMed ID: 32405730
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The hemispheric distribution of the transient rat VEP: a comparison of flash and pattern stimulation.
    Onofrj M; Harnois C; Bodis-Wollner I
    Exp Brain Res; 1985; 59(3):427-33. PubMed ID: 4029318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual evoked magnetic responses to central and peripheral stimulation: simultaneous VEP recordings.
    Brecelj J; Kakigi R; Koyama S; Hoshiyama M
    Brain Topogr; 1998; 10(3):227-37. PubMed ID: 9562544
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Source model and scalp topography of pattern reversal visual evoked potentials to altitudinal stimuli suggest that infoldings of calcarine fissure are not part of VEP generators.
    Onofrj M; Fulgente T; Thomas A; Malatesta G; Peresson M; Locatelli T; Martinelli V; Comi G
    Brain Topogr; 1995; 7(3):217-31. PubMed ID: 7599021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-frequency analysis of visual evoked potentials for interhemispheric transfer time and proportion in callosal fibers of different diameters.
    Ulusoy I; Halici U; Nalçaci E; Anaç I; Leblebicio Eroğlu K; Başar-Eroğlu C
    Biol Cybern; 2004 Apr; 90(4):291-301. PubMed ID: 15085348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of the temporal properties of visual evoked potentials to luminance and colour contrast in infants.
    Morrone MC; Fiorentini A; Burr DC
    Vision Res; 1996 Oct; 36(19):3141-55. PubMed ID: 8917775
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steady-State Visually Evoked Potentials Elicited by Multifrequency Pattern-Reversal Stimulation.
    Hohberger B; Kremers J; Horn FK
    Transl Vis Sci Technol; 2019; 8(1):24. PubMed ID: 30834172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.