BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36272070)

  • 1. Hybridization Chain Reaction Fluorescence In Situ Hybridization (HCR-FISH) in Ambystoma mexicanum Tissue.
    Lovely AM; Duerr TJ; Stein DF; Mun ET; Monaghan JR
    Methods Mol Biol; 2023; 2562():109-122. PubMed ID: 36272070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescence In Situ Hybridization of DNA Probes on Mitotic Chromosomes of the Mexican Axolotl.
    Keinath M; Timoshevskiy V
    Methods Mol Biol; 2023; 2562():165-173. PubMed ID: 36272074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Canonical Wnt signaling and the regulation of divergent mesenchymal Fgf8 expression in axolotl limb development and regeneration.
    Glotzer GL; Tardivo P; Tanaka EM
    Elife; 2022 May; 11():. PubMed ID: 35587651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiplexed Quantitative In Situ Hybridization with Subcellular or Single-Molecule Resolution Within Whole-Mount Vertebrate Embryos: qHCR and dHCR Imaging (v3.0).
    Choi HMT; Schwarzkopf M; Pierce NA
    Methods Mol Biol; 2020; 2148():159-178. PubMed ID: 32394381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigating Nrg1 Signaling in the Regenerating Axolotl Spinal Cord Using Multiplexed FISH.
    Freitas PD; Lovely AM; Monaghan JR
    Dev Neurobiol; 2019 May; 79(5):453-467. PubMed ID: 30793850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplexed Quantitative In Situ Hybridization for Mammalian Cells on a Slide: qHCR and dHCR Imaging (v3.0).
    Schwarzkopf M; Choi HMT; Pierce NA
    Methods Mol Biol; 2020; 2148():143-156. PubMed ID: 32394380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Programmable in situ amplification for multiplexed imaging of mRNA expression.
    Choi HM; Chang JY; Trinh le A; Padilla JE; Fraser SE; Pierce NA
    Nat Biotechnol; 2010 Nov; 28(11):1208-12. PubMed ID: 21037591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A constitutively expressed fluorescent ubiquitination-based cell-cycle indicator (FUCCI) in axolotls for studying tissue regeneration.
    Duerr TJ; Jeon EK; Wells KM; Villanueva A; Seifert AW; McCusker CD; Monaghan JR
    Development; 2022 Mar; 149(6):. PubMed ID: 35266986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of axolotl lampbrush chromosomes by fluorescence in situ hybridization and immunostaining.
    Keinath MC; Davidian A; Timoshevskiy V; Timoshevskaya N; Gall JG
    Exp Cell Res; 2021 Apr; 401(2):112523. PubMed ID: 33675804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of reference genes and validation for gene expression studies in diverse axolotl (Ambystoma mexicanum) tissues.
    Guelke E; Bucan V; Liebsch C; Lazaridis A; Radtke C; Vogt PM; Reimers K
    Gene; 2015 Apr; 560(1):114-23. PubMed ID: 25637570
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hybridization chain reaction enables a unified approach to multiplexed, quantitative, high-resolution immunohistochemistry and in situ hybridization.
    Schwarzkopf M; Liu MC; Schulte SJ; Ives R; Husain N; Choi HMT; Pierce NA
    Development; 2021 Nov; 148(22):. PubMed ID: 35020875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplexed Quantitative In Situ Hybridization for Mammalian or Bacterial Cells in Suspension: qHCR Flow Cytometry (v3.0).
    Schwarzkopf M; Choi HMT; Pierce NA
    Methods Mol Biol; 2020; 2148():127-141. PubMed ID: 32394379
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic expression of two thrombospondins during axolotl limb regeneration.
    Whited JL; Lehoczky JA; Austin CA; Tabin CJ
    Dev Dyn; 2011 May; 240(5):1249-58. PubMed ID: 21360624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging and Quantification of mRNA Molecules at Single-Cell Resolution in the Human Fungal Pathogen Candida albicans.
    Moreno-Velásquez SD; Pérez JC
    mSphere; 2021 Aug; 6(4):e0041121. PubMed ID: 34232078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transcriptional correlates of proximal-distal identify and regeneration timing in axolotl limbs.
    Randal Voss S; Murrugarra D; Jensen TB; Monaghan JR
    Comp Biochem Physiol C Toxicol Pharmacol; 2018 Jun; 208():53-63. PubMed ID: 29107037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pitx1 expression in developing and regenerating axolotl limbs.
    Shimokawa T; Yasutaka S; Kominami R; Tanaka S; Shinohara H
    Okajimas Folia Anat Jpn; 2008 May; 85(1):5-10. PubMed ID: 18833906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D exploration of gene expression in chicken embryos through combined RNA fluorescence in situ hybridization, immunofluorescence, and clearing.
    André M; Dinvaut S; Castellani V; Falk J
    BMC Biol; 2024 Jun; 22(1):131. PubMed ID: 38831263
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput RNA-HCR-FISH Detection of Endogenous Pre-mRNA Splice Variants.
    Shilo A; Pegoraro G; Misteli T
    Methods Mol Biol; 2024; 2784():133-146. PubMed ID: 38502483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Longitudinal 16S rRNA data derived from limb regenerative tissue samples of axolotl Ambystoma mexicanum.
    Demircan T; İlhan AE; Ovezmyradov G; Öztürk G; Yıldırım S
    Sci Data; 2019 May; 6(1):70. PubMed ID: 31123261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of fibroblast growth factors 4, 8, and 10 in limbs, flanks, and blastemas of Ambystoma.
    Christensen RN; Weinstein M; Tassava RA
    Dev Dyn; 2002 Mar; 223(2):193-203. PubMed ID: 11836784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.